Hairun Guo
Group Leader
Shanghai University
Research Interests

Our research fields include but not limited to ultrafast nonlinear optics, integrated photonics, optical frequency metrology and frequency comb technique.

Our group is always open for colleague school students of all levels. In addition to graduate students who are pursuing their Master/PhD degree, we also have undergraduate students who would participate our research projects and have their scientific skill trained. We warmly encourage students who are self-motivated and in favor of science and applications to apply our annually open positions as PhD candidates and Postdocs. Candidates with a strong background in optics and photonics, or with experiences in fundamental research or application practices, are especially welcomed.


Hairun Guo obtained his PhD at Technical University of Denmark (DTU) in 2014. In 2015-2018, he joined the laboratory of photonics and quantum measurements at Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland, as a postdoc scientist, where he was also granted the Marie Curie individual research fellowship. Since 2019, he received the position of professorship at the key laboratory of specialty fiber optics and optical access networks at Shanghai University. His research group is now focusing on emergent phenomena in ultrafast nonlinear optics and on applications based on optical frequency comb technique.


(since 2018)

  1. Y. Chen, T. Liu, S. Sun, and H. Guo, "Temporal dissipative structures in optical Kerr resonators with transient loss fluctuation," Opt. Express 29, 35776-35791 (2021)
  2. A. Tikan, J. Riemensberger, K. Komagata, S. Hönl, M. Churaev, C. Skehan, H. Guo, R. N. Wang, J. Liu, P. Seidler, T. J. Kippenberg, “Emergent nonlinear phenomena in a driven dissipative photonic dimer,” Nat. Phys. 17, 604-610 (2021).
  3. H. Guo, W. Weng, J. Liu, F. Yang, W. Hänsel, C. S. Brès, L. Thévenaz, R. Holzwarth, and T. J. Kippenberg, "Nanophotonic supercontinuum-based mid-infrared dual-comb spectroscopy," Optica 7, 1181-1188 (2020)
  4. J. Liu, E. Lucas, A.S. Raja., J. He, J. Riemensberger, R. Wang, M. Karpov, H. Guo, R. Bouchand and T.J. Kippenberg, “Photonic microwave generation in the X- and K-band using integrated soliton microcombs,” Nat. Photon. 14, 486-491 (2020).
  5. M. Karpov, M. H. P. Pfeiffer, H. Guo, W. Weng, J. Liu and T. J. Kippenberg, “Dynamics of soliton crystals in optical microresonators,” Nat. Phys. 15 1071-1077 (2019).
  6. D. Martyshkin, V. Fedorov, T. Kesterson, S. Vasilyev, H. Guo, J. Liu, W. Weng, K. Vodopyanov, T. J. Kippenberg and S. Mirov, “Visible-near-middle infrared spanning supercontinuum generation in a silicon nitride (Si3N4) waveguide,” Opt. Mater. Express 9, 2553-2559 (2019).
  7. W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, T. J. Kippenberg, “Spectral purification of microwave signals with disciplined dissipative Kerr solitons,” Phys. Rev. Lett. 122, 013902 (2019).
  8. D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T. J. Kippenberg and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum,” Nat. Commun. 10, 1553 (2019).
  9. A. S. Raja, A. S. Voloshin, H. Guo, S. E. Agafonova, J. Liu, A. S. Gorodnitskiy, M. Karpov, N. G. Pavlov, E. Lucas, R. R. Galiev, A. E. Shitikov, J. D. Jost, M. L. Gorodetsky and T. J. Kippenberg, “Electrically pumped photonic integrated soliton microcomb,” Nat. Commun. 10, 680 (2019).
  10. J. Liu, A. S. Raja, M. Karpov, B. Ghadiani, M. H. P. Pfeiffer, B. Du, N. J. Engelsen, H. Guo, M. Zervas, and T. J. Kippenberg, "Ultralow-power chip-based soliton microcombs for photonic integration," Optica 5, 1347-1353 (2018).
  11. J. Liu, A. S. Raja, M. H. P. Pfeiffer, C. Herkommer, H. Guo, M. Zervas, M. Geiselmann, T. J. Kippenberg, “Double inverse nanotapers for efficient light coupling to integrated photonic devices,” Opt. Lett. 43, 3200-3203 (2018).
  12. H. Guo, C. Herkommer, A. Billat, D. Grassani, C. Zhang, M. H. P. Pfeiffer, W. Weng, C. Bres, T. J. Kippenberg, “Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nano-photonic waveguides,” Nat. Photon. 12, 330-335 (2018).