Bin Zhang
Sun Yat-sen University
Research Interests

1. 集成光子器件材料平台开发;
2. 片上集成激光器:多波长、髙相干、大带宽
3. 红外智能光感知芯片:红外光子信号与光谱探测、片上集成光谱仪



Work Experience

2012-2017年先后跟随南洋理工大学唐定远教授、澳大利亚国立大学Prof. Barry Luther-Davies、香港理工大学谭华耀教授从事科研工作。




1. Xia, D., Huang, Y., Zhang, B*., Zeng, P., Zhao, J., Yang, Z., Sun, S., Luo, L., Hu, G., Liu, D., Wang, Z., Li, Y., Guo, H., Li, Z*., Engineered Raman Lasing in Photonic Integrated Chalcogenide Microresonators. Laser & Photonics Reviews 2022, 2100443.
2. B. Zhang*, P. Zeng, Z. Yang, D. Xia, Y. Sun, Y. Huang, J. Song, J. Pan, H. Cheng, D. Choi, and Z. Li* "On-chip Chalcogenide Microresonators with Low Threshold Parametric Oscillation," Photonics Research 9 (7), 1272-1279 (2021).
3. B. Zhang*, Y. Sun, Y. Xu, G. Hu, P. Zeng, M. Gao, D. Xia, Y. Huang, and Z. Li*, "Loss-induced switching between electromagnetically induced transparency and critical coupling in a chalcogenide waveguide," Optics Letters 46, 2828-2831 (2021). (Editor‘s Pick)
4. D. Xia, Y. Huang, B. Zhang*, Z. Yang, P. Zeng, H. Shang, H. Cheng, L. Liu, M. Zhang, Y. Zhu, and Z. Li, "On-chip broadband mid-infrared supercontinuum generation based on Highly nonlinear chalcogenide glass waveguides," Frontiers in Physics 9, 93 (2021).
5. Y. Huang, D. Xia, B. Zhang*, P. Zeng, Z. Yang, H. Cheng, M. Zhang, Y. Zhu, and Z. Li, "Theoretical Investigation of Broadband Frequency Conversion Bridging the Mid-Infrared and Telecom Band Through a Chalcogenide/Sio 2 Hybrid Waveguide," IEEE Photonics Journal 13, 1-10 (2021).
6. P. Zeng, D. Xia, Z. Yang, B. Zhang*, Y. Sun, Y. Huang, J. Song, Y. Zhu, and Z. Li, "High-Q Ge-As-S Microring Resonators based on improved fabrication process for optical parametric amplifier," in CLEO: QELS_Fundamental Science, (Optical Society of America, 2020), JTu2B. 22.
7. D. Xia, P. Zeng, Z. Yang, Y. Sun, Y. Huang, J. Pan, J. Song, Y. Zhu, H. Guo, B. Zhang* and Z. Li,, "Kerr frequency comb generation in photonic integrated Ge-As-S chalcogenide microresonators," in CLEO: Science and Innovations, (Optical Society of America, 2020), SW4J. 2.
8. D. Xia, Z. Yang, P. Zeng, Y. Huang, Y. Sun, J. Pan, J. Song, Y. Zhu, H. Guo, B. Zhang*, and Z. Li, "Integrated Ge-Sb-S chalcogenide microresonator on chip for nonlinear photonics," in Conference on Lasers and Electro-Optics/Pacific Rim, (Optical Society of America, 2020), C3C_1.
9. W. Shen, P. Zeng, Z. Yang, D. Xia, J. Du*, B. Zhang*, K. Xu, Z. He, and Z. Li*, "Chalcogenide glass photonic integration for improved 2 μm optical interconnection," Photonics Research 8, 1484-1490 (2020). (Editor‘s Pick)
10. W. Shen, P. Zeng, J. Du*, B. Zhang*, Z. Li, K. Xu, and Z. He, "Chalcogenide Photonic Integration at 2 Micron with Improved Wavelength and Fabrication Dependency," in CLEO: Science and Innovations, (Optical Society of America, 2020), STh4L. 3.
11. H. Shang, D. Sun, M. Zhang, J. Song, Z. Yang, D. Liu, S. Zeng, L. Wan, B. Zhang, and Z. Wang, "On-chip Detector Based on Supercontinuum Generation in Chalcogenide Waveguide," Journal of Lightwave Technology (2020).
12. J. Pan, B. Zhang*, Z. Liu, J. Zhao, Y. Feng, L. Wan, and Z. Li*, "Microbubble resonators combined with a digital optical frequency comb for high-precision air-coupled ultrasound detectors," Photonics Research 8, 303-310 (2020).
13. H. Ouyang, H. Chen, Y. Tang, J. Zhang, C. Zhang, B. Zhang*, and T. Jiang*, "All-optical dynamic tuning of local excitonic emission of monolayer MoS2 by integration with Ge2Sb2Te5," Nanophotonics 1(2020).
14. Y. Chen, M. Zhang*, Z. Shan*, C. Wang, B. Zhang*, J. Xu, and R. Wang, "High content Er3+-doped 25La2O3-75Ga2O3 glass: A potential material for high-power lasers or EDWA," Journal of Alloys Compounds 837, 155477 (2020).
15. Y. Chen, J. Li*, X. Guo, L. Wan, J. Liu, Z. Chen, J. Pan, B. Zhang, Z. Li*, and Y. Qin, "On-chip high-sensitivity photonic temperature sensor based on a GaAs microresonator," Optics Letters 45, 5105-5108 (2020).
16. B. Yu, Y. Chen, J. Pan, B. Zhang, F. Li, L. Wan, X. Guo*, J. Li, and Z. Li*, "Silica-microsphere-cavity-based microwave photonic notch filter with ultra-narrow bandwidth and high peak rejection," Optics letters 44, 1411-1414 (2019).
17. J. Tu, Z. Liu*, S. Gao, Z. Wang, J. Zhang, B. Zhang, J. Li, W. Liu, H. Tam, and Z. Li, "Ring-core fiber with negative curvature structure supporting orbital angular momentum modes," Optics express 27, 20358-20372 (2019).
18. H. Ren, Y. Yu, C. Zhai, B. Zhang, A. Yang, K. Tian, X. Feng, Z. Yang*, P. Wang, and B. Luther-Davies, "Chalcogenide glass fibers with a rectangular core for polarized mid-infrared supercontinuum generation," Journal of Non-Crystalline Solids 517, 57-60 (2019).
19. Z. Lin, Z. Chen, B. Zhang, F. Li, J. Li, X. Guo*, and Z. Li*, "Wideband and low-error microwave frequency measurement using degenerate four-wave mixing-based nonlinear interferometer," Optics letters 44, 1848-1851 (2019).
20. L. W. Z. Chen, J. Song, J. Pan, Y. Zhu, Z. Yang, W. Liu, J. Li, S. Gao, Y.-S. Lin, B. Zhang*, and Z. Li*,, "Optical, mechanical and thermal characterizations of suspended chalcogenide glass microdisk membrane," Optics express 27, 15918-15925 (2019).
21. Z. Xu, R. Xu, J. Sha, B. Zhang, Y. Tong, and Y.S. Lin*, "Infrared metamaterial absorber by using chalcogenide glass material with a cyclic ring-disk structure," OSA contimuum 1[2] 573-80 (2018).
22. J. Tu, B. Zhang*, Z. Liu, X. Zhou, K. Long, Z. Li, C. Lu, and C. Yu, "Chalcogenide-Glass Nested Anti-Resonant Nodeless Fibers in Mid-Infrared Region," Journal of Lightwave Technology, 36[22] 5244-53 (2018).
23. S. S. Qi, B. Zhang*, C. C. Zhai, Y. C. Li, A. P. Yang, Y. Yu, D. Y. Tang, Z. Y. Yang*, and B. Luther-Davies, "High-resolution chalcogenide fiber bundles for longwave infrared imaging," Opt Express 25 (21),; 26160-26165 (2017).
24. A. P. Yang, J. H. Qiu, M. J. Zhang, H. Ren, C. C. Zhai, S. S. Qi, B. Zhang, D. Y. Tang, and Z. Y. Yang*, "Mid-infrared luminescence of Dy3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers," Journal of Alloys and Compounds 695, 1237-1242 (2017).
25. H. D. Song, Y. Liu*, B. Zhang, K. Z. Tian, P. P. Zhu, H. Lu, and Q. Tang, "Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers," Biomed. Opt. Express 8 (1), 384-394 (2017).