Dmitry A. Savelyev is co-author more than 70 scientific papers and 4 certificates of state registration of computer programs.
List of major publications (WoS)
1. Savelyev, D., & Kazanskiy, N. (2021). Near-Field Vortex Beams Diffraction on Surface Micro-Defects and Diffractive Axicons for Polarization State Recognition. Sensors, 21(6), 1973. DOI: 10.3390/s21061973 (Q1)
2. Savelyev, D. A. (2021). The investigation of the features of focusing vortex super-Gaussian beams with a variable-height diffractive axicon. Computer Optics, 45(2), 214-221. DOI: 10.18287/2412-6179-CO-862
3. Savelyev, D. A. (2021). The investigation of focusing of cylindrically polarized beams with the variable height of optical elements using high-performance computer systems. Proceedings of SPIE - Optical Technologies for Telecommunications 2020, 11793, 117930X. DOI: 10.1117/12.2591993
4. Savelyev, D. (2020). The investigation of the cylindrically polarized beams focusing by a diffractive axicon using high-performance computer systems. 2020 International Conference on Information Technology and Nanotechnology (ITNT), IEEE, 1-5. DOI: 10.1109/ITNT49337.2020.9253243
5. Degtyarev, S. A., Savelyev, D. A., & Khonina, S. N. (2019). Subwavelength Diffraction Grating with Continuous Ridges for Inverse Energy Flux Generation. 2019 PhotonIcs & Electromagnetics Research Symposium-Spring (PIERS-Spring), IEEE, 2005-2010. DOI: 10.1109/PIERS-Spring46901.2019.9017337
6. Savelyev, D. A., & Krasnov, S. V. (2019). Simulation of pulses propagation in a waveguide with a diffraction grating using high-performance computer systems. Proceedings of SPIE - Optical Technologies for Telecommunications 2018, 11146, 1114609. DOI: 10.1117/12.2527244
7. Degtyarev, S. A., Savelyev, D. A., & Karpeev, S. V. (2019). Diffractive optical elements for the generating cylindrical beams of different orders. Computer Optics, 43(3), 347-355. DOI: https://doi.org/10.18287/2412-6179-2019-43-3-347-355
8. Degtyarev, S., Savelyev, D., Khonina, S., & Kazanskiy, N. (2019). Metasurfaces with continuous ridges for inverse energy flux generation. Optics Express, 27(11), 15129-15135. DOI: 10.1364/OE.27.015129 (Q1)
9. Savelyev, D. A., & Degtyarev, S. A. (2018). Investigation of vortex evanescent fields in the near zone of fiber taper and sub-wavelength diffractive axicon. Proceedings of SPIE - Optical Technologies in Telecommunications 2017, 10774, 107740J. DOI: 10.1117/12.2318740
10. Khonina, S., Degtyarev, S., Savelyev, D., & Ustinov, A. (2017). Focused, evanescent, hollow, and collimated beams formed by microaxicons with different conical angles. Optics Express, 25(16), 19052-19064. DOI:10.1364/OE.25.019052 (Q1)
11. Savelyev, D. (2017). Diffraction of a Gaussian beam on a gradient lens with a fractional degree of dependence on the radius. Procedia engineering, 201, 69-72. DOI: 10.1016/j.proeng.2017.09.663
12. Savelyev, D. A., Khonina, S. N., & Golub, I. (2016). Tight focusing of higher orders Laguerre-Gaussian modes. AIP Conference Proceedings, 1724(1), 020021). DOI: 10.1063/1.4945141
13. Verma, P., Juneja, S., Savelyev, D. A., Khonina, S. N., & Gopal, R. (2016). Design and fabrication of a 1-DOF drive mode and 2-DOF sense mode micro-gyroscope using SU-8 based UV-LIGA process. AIP Conference Proceedings 1724(1), 020017. DOI: 10.1063/1.4945137
14. Khonina, S. N., Savelyev, D. A., & Kazanskiy, N. L. (2016). Analysis of polarisation states at sharp focusing. Optik, 127(6), 3372-3378. DOI: 10.1016/j.ijleo.2015.12.108
15. Khonina, S. N., Savelyev, D. A., & Kazanskiy, N. L. (2015). Vortex phase elements as detectors of polarization state. Optics Express, 23(14), 17845-17859. DOI: 10.1364/OE.23.017845 (Q1)
16. Savelyev, D. A., & Khonina, S. N. (2015). Characteristics of sharp focusing of vortex Laguerre-Gaussian beams. Computer Optics, 39(5), 654-662. DOI: 10.18287/0134-2452-2015-39-5-654-662.
17. Khonina, S. N., & Savelyev, D. A. (2015). Optimization of the optical microelements using high-performance computer systems. Radiophysics and Quantum Electronics, 57(8-9), 650-658. DOI 10.1007/s11141-015-9550-0
18. Khonina S.N., & Savelyev D.A. (2015). Laser beam polarization type identification in the tight focus model. Pattern Recognition and Image Analysis, 25(3), 442-455. DOI: 10.1134/S1054661815030104
19. Savelyev, D. A., & Khonina S. N. (2014). Numerical analysis of subwavelength focusing using a silicon cylinder. Computer Optics, 38(4), 638-642. DOI: 10.18287/0134-2452-2014-38-4-638-642
20. Savelyev, D. A., & Khonina, S. N. (2014). The calculation of the diffraction of the laser beams with a phase singularity on the micro-axicons with using high-performance computing. Journal of Physics: Conference Series 490(1), 012213. DOI: 10.1088/1742-6596/490/1/012213
21. Khonina, S. N., Karpeev, S. V., Alferov, S. V., Savelyev, D. A., Laukkanen, J., & Turunen, J. (2013). Experimental demonstration of the generation of the longitudinal E-field component on the optical axis with high-numerical-aperture binary axicons illuminated by linearly and circularly polarized beams. Journal of Optics, 15(8), 085704. DOI: 10.1088/2040-8978/15/8/085704 (Q1)
22. Khonina S. N., & Savelyev D. A. (2013). High-aperture binary axicons for the formation of the longitudinal electric field component on the optical axis for linear and circular polarizations of the illuminating beam. Journal of Experimental and Theoretical Physics, 117(4), 623-630. DOI: 10.1134/S1063776113120157
23. Khonina S.N., Savelyev D.A., & Ustinov A.V. (2013). Diffraction of laser beam on a two-zone cylindrical microelement. Computer Optics, 37(2), 160-169. DOI: 10.18287/0134-2452-2013-37-2-160-169
24. Khonina S.N., Karpeev S.V., Alferov S.V., & Savelyev, D. A. (2013). Experimental demonstration of generation of longitudinal component of the electric field on the optical axis by high-aperture binary axicon for linear and circular polarization of the incident beam. Computer Optics, 37(1), 76-87. DOI: 10.18287/0134-2452-2013-37-1-76-87
25. Khonina S.N., Savel'ev D.A., Serafimovich P.G., & Pustovoĭ, I. A. (2012). Diffraction at binary microaxicons in the near field. Journal of Optical Technology, 79(10), 626-631. DOI: 10.1364/JOT.79.000626