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Modeling of EBG Structures Using the Transmission Matrix
Method

K. Bharath, E. Engin, T. Yoshitaka, and M. Swaminathan
Georgia Institute of Technology, USA

Electromagnetic Band Gap (EBG) structures have been employed in noise suppression schemes for mixed
signal applications [1]. The design and modeling of these structures typically requires the use of full-wave solvers
to characterize their frequency response. However, this can be computationally expensive. In order to reduce
the analysis time, the use of a model based simulation tool such as the Transmission Matrix Method (TMM) [2]
has been suggested. TMM subsections a given structure into square ’unit cells’ and develops an equivalent
RLGC netlist. Modeling large plane like structures using this technique has been shown to be very accurate.
However, for structures such as the Alternating Impedance (AI) EBG, it was found that simulation results
from TMM showed discrepancies from measurement. This was attributed to the Fringe and Gap effects. Thus,
accurate simulation of the AI EBG requires the inclusion of these effects into TMM.

The fringe effect can be modeled by adding a fringe capacitor, Cf , and a fringe inductance,

Figure 1: Model to hardware correlation.

Lf , to unit cells that lie along an edge. The fringe
elements, Cf and Lf , are calculated by employing
empirical formulas for microstrip structures. The
Gap effect is modeled as a gap capacitance, Cg,
which is added to nodes that lie on either side of
an edge. Cg is extracted from the 2D field solver
Ansoft Maxwell.

The model to hardware correlation, with and
without inclusion of Fringe and Gap Capacitance
is shown in Fig. 1. It is seen that the inclusion of
Fringe and Gap effects leads to accurate prediction
of bandwidth and isolation levels.

The fringe effect is especially pronounced when
there are narrow connections between two plane
patches. The gap effect becomes important as two
separated patches get closer. Hence, both these ef-
fects become important to analyze an EBG struc-
ture. With a simple extension of TMM to include
fringe and gap effects, such complicated structures
can be analyzed very efficiently and accurately.
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Bloch Mode Modelling of the Scattering of Plane Waves and Fano
Resonances for a Photonic Crystal Slab

L. C. Botten, M. A. Byrne, A. A. Asatryan, and N. A. Nicorovici
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University of Sydney, Australia

Photonic crystals (PC) are amongst the most active research topics in contemporary photonics, with PC
slabs prominent amongst the range of structures that are under investigation. In these, the confinement of
light occurs via two mechanisms—two-dimensional band gap confinement in the transverse direction, and total
internal reflection vertically.

Our interest in these structures arises from the recent observation that Fano resonances, originally discovered
in the field of particle physics, are observable in photonic systems. Recent work by Fan, which involved FDTD
simulation and a phenomenological approximation of the scattering matrix, showed that the transmission spec-
trum of the slab could be constructed from a sequence of Lorentzian resonances (with poles in the complex
frequency plane) superimposed on the transmittance curve of the unpatterned slab, which acts as a Fabry-Perot
(FP) interferometer.

In this paper, we outline a new formulation for the diffraction of a plane wave by a PC slab and show how
we may discover the origin of the Fano resonances directly from the the modes of the structure. The technique,
based on a multipole-scattering matrix formulation and closely mirroring the geometry of the structure leads to
a countably infinite set of modes with propagation constants βj in the direction of the axis of the cylinders. Only
a finite number are propagating (i.e., with βj real), while the remainder are evanescent and attenuate as they
propagate through the slab. We characterize the diffraction at each of the upper and lower planar interfaces
of the structure using matrix generalizations of Fresnel “coefficients”. Four such matrices are required: T12

and R12 which are respectively the transmission and reflection matrices for plane wave incidence from air onto
a photonic crystal slab of semi-infinite thickness, and T21 and R21 which are the corresponding matrices for
modes incident in the direction of free space from within the slab. These Fresnel matrices closely resemble
their familiar scalar forms with, for example, R21 = (Z2 + JHZ1J)−1(Z2 − JHZ1J). In this expression, Z1 and
Z2 are respectively the (diagonal) impedance matrices for the free space and slab Bloch modes, with JHZ1J
representing the impedance of free space as “seen” by the PC modes.

Finally, we compute the reflection and transmission (T) matrices for the PC slab, from which the reflectance
and transmittance is calculated. Here, T = T21 P(I−R21PR21P)−1T12 (where P = diageβjh), which closely
resembles the Airy formulae for a FP interferometer. The symmetric and anti-symmetric slab modes derive
from the solutions of det(I ∓R21P) = 0, the solutions of which lie in the complex plane since the modes are
lossy. Finally, we characterize the Fano resonances directly in terms of the resonant behaviour of common pairs
of PC modes.
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Methods for Mitigating the Effect of Split Reference Planes on
High Speed Digital System Interfaces

H. Pan1, H.-Y. Chao2, and C. Pan1

1Intel Corporation, USA
2National Chiao Tung University, Taiwan

In the past few decades, microprocessor operating frequency has increased from a few megahertz to multi
gigahertz. Board-level high speed digital interfaces, such as system bus, system memory, and system I/O, that
carry information between microprocessor, memory controller, I/O controller, and other components, however,
have been operating at a lower frequency. This is in part because transmission line and other higher order
electromagnetic effects can dominate board-level interconnect designs due to electrically significant interconnect
sizes. Yet, due to the ever increasing demand for more bandwidth, operating frequencies of these board-level
high speed interfaces have also been doubling in roughly two-year cycles. Parallel high speed interfaces such as
Front-Side Bus (FSB) and Double Data Rate-III (DDR-3) SDRAM, for example, are fast approaching 1GT/s,
where significant frequency content can extend well into multi-GHz. In the mean time, PCI Express-like serial
differential high speed interfaces, already operating at speeds over 1 GT/s, are designed into new cross-chip
interconnects such as the Direct Media Interface (DMI). Routing a system with such a large number of high
speed digital buses while insuring signal integrity, EMI compatibility, and ESD susceptibility, is a challenge.

While on-board interconnects are operating at much higher frequencies, the cost of the overall computing
system has been decreasing. Computer manufacturers are therefore continuously looking for ways to lower
the production cost. In a mobile computing system, where size is a main constraint and expensive high layer
count printed circuit board (PCB) technology has been used to control routing congestion, using cheaper
technologies with a smaller number of routing layers is an attractive mean of controlling manufacturing cost.
On the other hand, routing on a severely size-constrained mobile platform with a smaller number of routing
layers can inadvertently expose wide high speed digital interfaces to non-ideal conditions such as reference plane
gaps produced by various power islands. Multi-GHz operation of these high speed signals also means that the
traditional mitigation method of adding bypass capacitors across the reference gaps is becoming ineffective. In
this paper, we will explore a number of other methods that can be used in conjunction with bypass capacitors
to mitigate the effect of these reference plane gaps on signal quality, as well as system EMI and ESD.
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Multipath Reduction of GPS Measures through Heuristic
Techniques of Compensation

V. Barrile, M. Cacciola, and F. Cotroneo
University “Mediterranea” of Reggio Calabria, Italy

Abstract—The Global Positioning System, also known with the acronym GPS, is today widely used in civil and
military applications, as for correct object positioning, as in other fields (ionospheric inferences, soil mapping
and characterization, and so on). A limitation in the accuracy retrievable by differential GPS measures is due to
multipath error which arises when GPS signal is reflected by surfaces around the antenna. In particular, many
GPS receivers are projected with firmware implemented by means of classical mathematic algorithms, which
can minimize multipath errors. This paper describes project criteria and experimental results obtained by a
multipath rejection system based on Radial Basis Function Neural Networks, compared with measures retrieved
by a commercial Differential GPS receiver.

1. Introduction
One of the most relevant source of error in GPS differential measures is due to reflection of signal com-

ing from satellite by surfaces around GPS antenna. This phenomenon introduces a distortion in error phase
measurements, which in scientific literature is normally defined as multipath error [1]. In order to reduce its
influence, many solutions have been studied, working at level of elaboration of received GPS signal at ground.
In order to deject multipath effect, further methods are to position GPS antennas where reflections of signal
coming from GPS constellation are minimized, or to give extended ground plane to GPS antennas. In many
cases, however, these solutions are practically difficult to apply: an example is the installation of a GPS antenna
on a satellite in order to calculate its correct position in real-time. Nowadays, the most part of commercialized
Differential GPS (DGPS) receivers are able to grant performances of multipath rejection in the order of 75%,
with obtaining times averagely near of 10 s. In scientific environment there is the requirement to obtain an
expert and quick inferential model, that can guarantee multipath rejection quality at least comparable to clas-
sical models, but with better flexibility and robustness qualities, smaller computational complexity and lower
calculus times during regression phase, for real-time applications. Therefore, a Radial Basis Function Neural
Network (RBFNN) is used to calculate multipath biases, comparing retrieved simulation results with measure-
ments obtained by a commercial DGPS receiver. Two quantities have been considered to evaluate our RBFNN
model: gaps between RBFNN simulations and DGPS measurements, and elapsed times for retrieving RBFNN
results and DGPS measurements. In detail, the paper is structured according to the following schema: section
2 describes the fundamental of DGPS, with a brief explanation of multipath effect; in section 3 RBFNN are
drawn up; the case study and the campaigns of measurements are respectively pointed out in section 4 and 5;
section 6 is used to show RBFNN simulation results and, finally, some conclusions are illustrated in section 7.

2. Differential GPS: the Multipath Minimization Problem
The NavSTAR GPS (Navigation Satellite Timing And Ranging Global Positioning System) system was

originally borne in USA for military purposes; it allows the three-dimensional positioning of objects (also
moving) to be identified by means of information coming from a geostationary satellite system by using distance
measuring spatial intersections (ground receiver - orbit satellite). Mainly two kinds of GPS measures can be
used [2]: the pseudo-range and phase measures. GPS satellites transmit on two frequencies, L1 (1575.42 MHz)
and L2 (1227.6 MHz), of which the C/A code is modulated only on L1 while the P code is modulated on both
frequencies [3]. Mathematically, the pseudorange observable is formulated as follows [4]:

p = ρ + dρ + c(dt− dT ) + dion + dtrop + εp (1)

where p is the measured pseudorange ([m]), ρ is the geometric range ([m]), dρ is the orbital error ([m]), c is
the speed of light in ([m/s]), dt is the satellite clock error ([s]), dT is the receiver clock error ([s]), dion is the
ionospheric error ([m]), dtrop is the tropospheric error ([m]), εp is the receiver code noise plus multipath ([m]).
In the above equation, there are four unknowns, the three components of the user position and the receiver
clock error. Thus, assuming that all other errors are either removed by modelling or are zero mean, at least
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four pseudoranges must be observed in order to obtain a solution. The carrier phase observable is very similar
to the pseudorange observable:

Φ = ρ + dρ + c(dt− dT ) + λN − dion + dtrop + εΦ (2)
where Φ is the observed integrated carrier phase ([m]), λ is the wavelength ([m]), N is the integer ambiguity
(integer number of wavelengths between the satellite and the receiver), εΦ is the receiver carrier phase noise
plus multipath ([m]). In an attempt to reduce the errors in positioning results using equations (1) and (2), the
difference between observations from two different receivers but the same satellite are considered. Therefore, the
satellite clock error, is completely eliminated while the atmospheric and orbital errors are significantly reduced.
This method is commonly referred to as DGPS. By further differencing the observables between satellites (see
Fig. 1), the receiver clock error term is also eliminated and the double difference equations (represented by ∆∇)
become:

∆∇p = ∆∇ρ + ∆∇dρ + ∆∇dion + ∆∇dtrop + ∆∇εp (3)

∆∇Φ = ∆∇ρ + ∆∇dρ + λ∆∇N −∆∇dion + ∆∇dtrop + ∆∇εΦ (4)

The main advantage of the double difference observation is that the receiver clock errors are eliminated, and
ionospheric, tropospheric, and orbital errors are reduced.

Figure 1: Graphic schematization for double differences calculation

2.1. Multipath errors
Multipath is defined as “the phenomena whereby a signal arrives at a receiver via multiple paths” [5]. It

can be caused by almost any reflective surface near the antenna (Fig. 2). For short baselines (i. e. <10 km),
multipath is usually the largest error source. Under severe multipath conditions, errors can reach 1 wavelength
(i. e. 1 chip length) for code observations or 1/4 of a wavelength for phase observations. Recently, improvement
has been made in receiver design to reduce the effect of multipath in code measurements, with percentages equal
to 75% depending on the multipath delay.

Figure 2: Graphical description of multipath phenomenon



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 991

3. Radial Basis Function Neural Networks
Adaptive Neural Networks are very good tools for non-linear approximation [6]. Neural networks are com-

posed of simple elements operating in parallel. These elements are inspired by biological nervous systems. As
in nature, the network function is determined largely by the connections between elements. Commonly neural
networks are adjusted, or trained, so that a particular input leads to a specific target output. It is possible to
train a neural network to perform a particular function by adjusting the values of the connections (weights)
between elements. Typically many such input/target pairs are used, in this supervised learning, to train a
network. Therefore, Adaptive Neural Networks are basically adaptive systems that ”learn” to correctly execute
a defined job (complex, non linear and multi-variable relations) by using some examples [7]. RBFNNs have
capabilities to solve function approximation problems [8]. RBFNNs consist of three layers of nodes: more than
input and output layers, RBFNNs have a hidden layer, where Radial Basis Functions are applied on the input
data. A schematic representation of RBFNN is described in Fig. 3:

Figure 3: RBFNN schema

The ‖dist‖ box in this figure accepts the input vector p and the input weight matrix IW1,1, and produces a
vector having S1 elements. The elements are the distances between the input vector and vectors iIW1,1 formed
from the rows of the input weight matrix. We can understand how this network behaves by following an input
vector p through the network to the output a2. If we present an input vector to such a network, each neuron
in the radial basis layer will output a value according to how close the input vector is to each neuron’s weight
vector. Thus, radial basis neurons with weight vectors quite different from the input vector p have outputs near
zero. These small outputs have only a negligible effect on the linear output neurons. In contrast, a radial basis
neuron with a weight vector close to the input vector p produces a value near 1. If a neuron has an output
of 1 its output weights in the second layer pass their values to the linear neurons in the second layer. In fact,
if only one radial basis neuron had an output of 1, and all others had outputs of 0’s (or very close to 0), the
output of the linear layer would be the active neuron’s output weights. This would, however, be an extreme
case. Typically several neurons are always firing, to varying degrees.

4. The Case Study
Faculty of Engineering of University ”Mediterranea” of Reggio Calabria (Italy) activated a stable network to

monitor relative movements of Sicilian and Calabrian shores inner the area of Stretto di Messina by means GPS
techniques. Since vertexes of a main network cannot make movements in the order of the measure uncertainty
(10−6÷10−7), it has been necessary to implement a control subnet for each main vertex. One of these subnets is
composed by 4 vertexes (Fig. 4); they are located in a surely stable area with an optimal visibility of satellites.
It has been chosen short bases in order to avoid tropospheric and ionospheric errors; but it has been retrieved
multipath errors in base 2-4, due to reflecting surfaces near one of the vertexes.

Figure 4: Control subnet implemented to guarantee stability of main network
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Therefore, it has been exploited a RBFNN-based system in order to minimize multipath errors, evaluating
multipath as a function of other GPS quantities. RBFNNs are able to approximate the trend of a function after
a training procedure, which is carried out by a collection of data examples. Therefore, it is necessary to make a
measurement campaign in order to implement a dataset of training (DBTrain) and another to test the behavior
of RBFNN (DBTest).

5. Data Collection Campaign and RBF Simulation Results
The data collection campaign has been carried out inner the area described on section 4, by means of a

L1/L2 GPS antenna without multipath rejection, in two different days (acquisition times about equal to 24
hours). Multipath error has subsequently been calculated by means of equation (5), representing a simplified
schematization of phase differential measure:

b • s = mλ + ∆ϕ + ∆ϕric + ∆ϕbias + ∆ϕmp (5)

where b is baseline direction; s is the arrival direction of GPS signal; ∆ϕ is the fractional part of phase differential
measure (observable); ∆ϕric is the receiver noise (white noise with standard deviation approximately equal to
1-2 mm.); ∆ϕbias is the bias noise, considered as a constant (autocalibration procedure); ∆ϕmp is the multipath
error (highly correlated coloured noise). It is possible to obtain the ∆ϕmp value expressed in degree for each
base, by a comparison with the opportune ”nominal reference” and after approximations of bias and noise
in equation (5). Moreover, it is necessary to verify that approximations influence the measure value without
changing it, if the measure is compared by means of different antennas. This value is calculated by exploiting the
position of the two receivers and the satellite providing GPS signal; the satellite position is defined by azimuth
and elevation and is retrievable by ephemeredes of GPS signal. By using a classical GPS antenna without
multipath rejection, a set of measurements has been carried out in different places of Reggio Calabria, Italy.
So, a set of values has been collected for each of the following quantities (see eq. 5): b, ∆ϕ, ∆ϕric, ∆ϕbias; let
us define, for each measurement, these quantities as an input pattern. Subsequently, by using equations (5), (4)
and (2) the ∆ϕmp values (output patterns) has been calculated, and each input pattern has been linked to its
proper output pattern, making a so called data pattern. So, a set of 1500 data patterns has been collected in
order to implement the database used for training phase of RBFNN. The trained RBFNN retrieved by Neural
Network Matlab Toolbox has been subsequently tested inner the base 2-4 (Fig. 4). Specifically, it has been
considered mean, standard deviation and Round Mean Square (RMS) of errors introduced by ∆ϕmp . They
have been obtained after the elaboration of raw data during the 24 hours of acquisition using all visible satellites.
Retrieved results demonstrate a reduction of multipath effect in average equal to 45%, in standard deviation
of 20% and in RMS of 25%. Moreover, performances of our approach have been tested measuring the slope
distance of base 2-4. Measure retrieved by RBFNN-based system has been compared with ones retrieved by a
LEICA SR530 receiver.

Table 1 shows the measurements retrieved by LEICA SR530 and our RBFNN-based system for multipath
rejection, compared with actual slope distance measured by classical techniques. Performances of our RBFNN-
based system are also evaluated by a comparison of elapsed times to obtain 2-4 slope distance with the used
commercial GPS receiver (Table 2).

Table 1: Slope distance of base 2-4

Actual LEICA SR530 RBFNN-based System

Slope distance 2-4 (meters) 50.000 ± 0.0001 50.12 ± 0.0001 50.004 ± 0.0001

Table 2: Elapsed times to obtain 2-4 slope distance

LEICA SR530 RBFNN-based System

10 seconds 1.2 second
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6. Conclusions and Future Works
In this article, the problem of multipath in GPS measures has been analyzed. This is a very significant

problem, above all when application field needs a great accuracy in GPS observation. By means of a classical
GPS antenna, measurement campaigns has been carried out, and an heuristic system based on RBFNN has been
considered in order to reject multipath effects. Performances of our RBFNN-based system for multipath rejection
has been evaluated during the acquisition period and compared with measurements retrieved by commercial
receiver LEICA SR530. Retrieved results show the following advantages of RBF approach:

• during the 24 hours of acquisition, the RBFNN-based system allows a reduction of multipath effect aver-
agely equal to 30%;

• concerning the calculation of slope distance for base 2-4, a reduction of measure error about equal to
0.234% is obtained exploiting our RBFNN approach against the LEICA receiver;

• RBFNN-based system shows lower elaboration times than LEICA receiver; it is due to the lower compu-
tational complexity of the RBFNN-based system

Therefore, the usage of RBFNNs to reduce multipath errors show very interesting results, even if, considering
the approximations in (5) for bias and noise, they would have to be verified according to the application
environment. Moreover, a further development will be the hardware deployment on FPGA of trained RBFNN,
in order to build a Special Purpose Chip (SPC). The aim is to integrate the SPC into a GPS receiver without
multipath minimization capabilities, in order to compare its performances with ones obtained by a multipath
rejection antenna.
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Accurate Analysis of Practical Diffraction Gratings

H. A. Kalhor and M. R. Zunoubi
State University of New York, USA

Diffraction gratings have been used in many applications including spectroscopy for many years. Many
ingenious approximate, analytical, and numerical techniques have been devised and used for their analysis.
However, most of the proposed techniques used idealized models. The structures have been considered infinitely
periodic, perfectly conducting and without groove shape imperfections. Attempts have been made to incorporate
some imperfections such as finite conductivity and groove shape errors in the idealized models with some success
[1–4]. Theoretical and measurement results, however, did not agree in many cases and certain anomalous
behavior could not be explained. More recently, a method based on impedance boundary conditions has been
proposed to analyze finite planar and curved frequency selective surfaces [5].

Recent developments of new and powerful numerical methods have empowered researchers to study the
effects of these imperfections more accurately, and revisiting these classical problems seems in order.

The object of this presentation is to study the performance of practical gratings with all their associated
imperfections accurately. A few numerical techniques will be employed and compared and contrasted. The
behavior of reflection diffraction gratings of practical interest such as echelette sinusoidal, and lamellar as
well as transmission gratings made of wire grids, conducting cylinders, and conducting bars will be studied.
Comparison with experimental results will be made where possible.
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Starting from the propagation equation of partially coherent light, the spectral shift and spectral switch of
partially coherent modified Bessel-Gauss beams passing through a lens with aperture are studied. Numerical
results show that the on-axis spectrum in the near zone is different from the spectrum of the source, and the
on-axis spectrum in the near zone is split into multi-peaks. It is also found that the spectral shift shows a
gradual change. However, when zf approaches a critical value, a rapid spectral transition occurs. The effect
is called spectral switch. For example, when the parameters for calculation are the central frequency of the
spectrum ω0 = 3.2 ∗ 1015s−1, effective coherence length on the source plane σ0 = 0.6 ∗ 1015s−1, Fresnel number
of beam Nw = 1, the spectral degree of coherence ξ = 0.5, and truncation parameter δ = 0.3. For the axial
spectrum at zf = 0.0105, the relative spectral shift is bigger than zero, and the blue shift occurs. The two
major peaks reach the same height at the critical point zf = 0.0111, and the subordinate peaks separately at
the both sides of major peaks also reach the same height. This means that the spectral shift is transformed
from the blue shift to the red shift, and the spectral switch occurs at this point. With the increase of zf , the red
shift decreases. When zf equals 0.0127, the spectral shift equals 0. When zf equals 0.0148, the spectral switch
occurs again. The distance between the major peaks when zf equals 0.0127 is larger than that when zf equals
0.0111. Numerical results also show that the spectral switch positions and the spectral switch performance of
partially coherent modified Bessel-Gauss beams depend on the spectral degree of coherence, Fresnel number
of beam and truncation parameter. The number of spectral switch increases with the increase of the Fresnel
number of beam, and decreases with the increase of the spectral degree of coherence.
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Generalized Lorenz-Mie Theory for the Arbitrarily Oriented
Shaped Beam Scattering by a Spheroid

F. Xu1,2, K. F. Ren2, and X. S. Cai1

1University of Shanghai for Science and Technology, China
2Université et INSA de Rouen, France

Light scattering by a spheroid was firstly studied by S. Asano, et al., [1]. It was extended to the case
of arbitrary shaped beam scattering by J.P. Barton [2], who described the incident field through “surface
integrals”. Within the framework of generalized Lorenz-Mie theory (GLMT) [3], on-axis and off-axis Gaussian
beam scattering by a spheroid was also studied by Han, et al., [4, 5].

In the present paper, the scattering of a shaped beam with arbitrary orientation relative to a spheroidal
particle is developed within the framework of GLMT, i. e., the arbitrarily oriented incident beam is firstly
expressed by the beam shape coefficients (BSC) in spherical coordinates. Then the BSC is transformed to the
spheroidal coordinates, thanks to the relationship between the spherical wave vectors (mmn, nmn) [6] and the
spheroidal ones (Mmn, Nmn) [7].

But we found that for BSC evaluation by the localization approximation is no longer valid for the oblique
incidence. So the quadrature method is applied instead. Besides, for the sake of consistence with Lorenz-Mie
theory, time dependence of exp(iωt) is used, instead of exp(−iωt) in GLMT. The relationship of the BSC in
two different time conventions are carefully examined and a simple relationship is found.

Finally, numerical results of the scattered intensity in far field are presented. They are found coincident
with those in the cases of both oblique plane wave incidence on a spheroid [1] and shaped beam incidence on a
sphere [3].
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The Radiated Emission Approach to Specific Emitter
Identification

J. Dudczyk and M. Wnuk
Military University of Technology, Poland

The modern ESM/ELINT systems should be able to recognise emitters on the basis of the set of pulse
measurements in order to provide surveillance, tracking and platform identification. One of the most principal
functions of the ESM system is gathering basic information from entire electromagnetic spectrum and analysing
communication and non-communication emitter’s characteristics such as their technical parameters, operating
role and main tasks. In this analysis there are of special importance methods of data acquisition. The methods
of Specific Emiter Identification (SEI) are based on the Measurement and Signature Intelligence (MASINT).
Non-intentional emission (calls–radiated emisssion) is a source of knowledge about the analysed emitter. Such
information is crucial during the process of emitter identification. The results of classification and identification
are presented on a display in a form of tabular or grapfical options.

This paper provides an overview of the methods of radiated emission measurement, for example: Open
Area Test Site (OATS), full and semi anechoic chambers, Transverse Electromagnetic Cell (M. L. Crawford
Cell–TEM) and Gigahertz Transverse Electromagnetic Cell (GTEM), which may be used to identify radar’s
equipment.

This paper presents selected aspects of radiated emission acquisiton (in a specially prepared procedure),
analysis of their parameters, features extraction using “special linear transformation”. According to the pre-
sented method of transformation, the “measured function K(fn)” is determined. The function K(fn) is used to
extract radiated emission features, which modify structure of Extended Vector Parameters (EVP). At the end
of the procedure, radar emitter source identification is performed. During the process of emitter identification
distance functions (Euclidean, Mahalanobis, Hamming) are applied. The process of recognition is connected
with the data base, which is an important element in the modern electronic intelligence system. Dinstinctive
features extraction from radiated emission is used for special “radar signature” description in the data base.

Taking all above into consideration, applying the radiated emission to the specific emitter identification
is an essential element in formation of the examined system. The capability of an ESM/ELINT system to
correctly identify detectable radar emissions in a dense environment is key to their application in modern
commmand, communication and control system. The problem of radiated emission is essential with respect to
Electro-Magnetic Compatibility (EMC).
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Backscattering from Rectangular Plates Illuminated at Grazing
Incidence

R. A. Ross
17A Phillips Drive, Westford, MA, 01886, USA

A formula is presented for predicting monostatic scattering from rectangular plates at grazing incidence with
vertical polarization. The formula uses the Geometrical Theory of Diffraction to describe returns from the front
and rear of the plate. The contribution from the rear edge is associated with a new form of double diffraction.
Predictions are compared with numerical results from the Method of Moments for objects between 2 and 18
wavelengths in extent. When predicting the characteristic oscillation in RCS of rectangular plates as a function
of width, accuracy increases with increase in the height of the plate. When plates are both short and wide,
theory underestimates the RCS of peaks.
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Optimized Satellite System-like Data Fitting on a Spherical Shell
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Abstract—The measurement of irradiance on a spherical shell is a common in different fields that goes from
geological, biological and many others. Accuracy depends of a judicious use of the sampling, and the last is
often defined by technical limitations due to the available infrastructure in each field. Such is the case of the
so called planetary array, described as a set of satellite like trajectories on the spherical shell. Both, the data
acquisition and the ideal data base, in this case spherical harmonics, may be optimized. The measured points
are distributed over maximal circles obtained from the equator, and each other are related by the corresponding
rotations. Each circle has 2L+1 equidistant points (the first one and the last one coincides), and the field on
the sphere is adjusted by the determination of the harmonic coefficients, as an optimization problem, with Nc
equation systems of 2L+1 simultaneous equations for (L+1)2 variables.

1. Introduction
We had previously analyzed the problem of the irradiance measurement under circular and spherical geome-

tries, considering a uniform sensor detection system [1]. Now, we are trying to measure a field F, on the surface
of the Earth using a spherical detection system. The detectors are localized on trajectories, which are obtained
by rotations over the equator, as it is shown in Fig. 1, but the arrangement of the detectors is not uniform
distributed on the trajectories as in our earlier spherical experiments.

Equator

Geocenter

Satellite
orbital

Figure 1: One of the detectors of the proposed spherical detection system.

The analysis of the new system requires the mathematics development that is described as follows:
At first, we consider an observable F (θn; φn) over a determined number of points in the sphere. The points

of measurement are distributed over Nc maximal circles, which are obtained since rotations from the equator
C0 (defined by θ = 1

2π and 0 ≤ φ < 2π):

C(αj ,βj ,γj) := R(αj , βj , γj) : C0 (1)

by Euler angles (αj , βj , γj), j = 1, 2, ..., Nc. The normal lines to these circles are (βj , γj) on the sphere, and its
phases are αj respect to the Greenwich meridian.

Over each circle there are distributed an odd number 2L + 1 of equidistant points, where we measured the
value of F (θn;φn). In this way, we can calculate its 2L + 1 Fourier coefficients Gm through the FFT [2]. For
the equator case C0, we calculate:

F̃ 0
m :=

1√
2l + 1

L∑

n=−L

F (
1
2
π, φn)ei(mφn), where φn :=

2πn

2L + 1
, (2)
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with n, m ∈ {−L,−L + 1, ..., L} module 2L + 1 in the symmetrical interval f cycling. The Fourier synthesis is
given by:

F (
1
2
π, φn) =

1√
2L + 1

L∑

m=−L

F̃ 0
me−imφn . (3)

On the maximal circles C(αj ,βj ,γj) we will have the measurements and calculations of the 2L+1 corresponding
coefficients, F̃

(αj ,βj ,γj)
m , m

∣∣L−L, j
∣∣Nc

1
.

The F field over the sphere under measurement has a development in spherical harmonics truncated at L
value, given by:

F (θ, φ) =
L∑

`=0

∑̀

m=−`

F`,mY`,m . (4)

The number of elements in the series is 1 + 3 + 5 + · · ·+ (2L + 1) = (L + 1)2. The question is: How we can
calculate the (L + 1)2 coefficients of spherical harmonics F`,m in terms of the Nc(2L + 1) coefficients F̃

(αj ,βj ,γj)
m

obtained over the circles?
In the following section we present the development over the equator, in section 3 we present the rotation

over any maximal circle, and in section 4 we compare the obtained results.

2. Development over the Equator
The spherical harmonics are given by:

Y`,m(θ, φ) = (−1)m
√

(` + 2)(` + m)!(`−m)!
eimφ

√
2π

×
∑

k

(−1)k(sin θ)2k+m

2k+m(k + m)!k!
(cos θ)`−2k−m

(`− 2k −m)!
. (5)

The factorials implies that the addition is over all integers k among max(−m, 0) and 1
2 (`−|m|), the number

of elements in the addition is given by 1
2 (` − |m|) + 1 (where |x| is the integer part of x). Over the equator

θ = 1
2π, the factor (cos θ)`−2k−m is different of zero, only when its power is zero, id est k = 1

2 (`−m) with `−m
even. Then:

Y`,m(
1
2
π, φ) = y`,m

eimφ

√
2π

, y`,m = y`,−m, (6)

Y`,m :=





(−1)(`+m)/2

√
(`+ 1

2 )(`+m)!(`−m)!

2`( 1
2 [`+m])!(( 1

2 [`−m])!)
`±m even

0, `±m odd .

(7)

Over the equator C0, the field F (θ, φ) development in a different of zero harmonics series (4) is:

F (
1
2
π, φ) =

L∑

`=0

L∑

m=−`

F`,mY`,m(
1
2
π, φ),

(
the harmonics of zero
value in C0 are absent

=
L∑

m=−`

eimφ

√
2π

L∑
`=|m|
`−m even

F`,m y`,m,

(
interchanging
additions ` and m

=
1√

2L + 1

L∑

m=−`

eimφF̃ 0
m ,

(
in agreement with (3)
considering φn = 2πn/(2L + 1). (8)

Comparing the last two terms, related with the coefficients introducing the 2L+1 measured/calculated data:

G0
m :=

√
2π

2L + 1
F̃ 0

m =
L∑

`=|m|
`−m even

F`,m y`,m, m
∣∣L−L. (9)
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Here we have the key relationships among the 2L + 1 coefficients {G0
m}L

m=−L measured/calculated over

the equator, and the (L + 1)2 coefficients
{

F`,m

}` L

m=−`,`=0
of the spherical harmonic development that we are

looking for. The harmonics with `−m even are absent, which have one of their nodal circles over the equator.
As an example we consider the case with L = 3 Then we have the development with 16 spherical harmonics:

Y0,0, {Y1,m}1m=−1 , {Y1,m}2m=−2 , and {Y1,m}3m=−3

with their corresponding coefficients F`,m.
On the other side, we have the 7 measured/calculated coefficients

{
G0

m

}3

m=−3
,

{
G0

m

}
=

√
2π/7 F̃ 0

m. The
equations (9) are then:

G0
3 = F3,3 y3,3 m = 3 •

G0
2 = F2,2 y2,2 m = 2 • ◦

G0
1 = F1,1 y1,1 + F3,1 y3,1 m = 1 • ◦ •

G0
0 = F0,0 y0,0 + F2,0 y2,0 m = 0 • ◦ • ◦ −→ `

G0
−1 = F1,−1 y1,−1 + F3,−1 y3,−1 m = −1 • ◦ •

G0
−2 = F2,−2 y2,−2 m = −2 • ◦

G0
−3 = F3,−3 y3,−3 m = −3 •

(10)

The right diagram shows the structure of the present terms • in the truncated series, and the absent ones ◦.
The equations used to calculate the 16 [that is, the (L + 1)2] coefficients of the harmonic series F`,m are

divided in three groups: are divided in three groups:

• Determined: F3,±3 and F2,±2 Always are 4: FL,±L and FL−1,±(L−1).

• In linear combination: F1,1 ↔ F3,1, F0,0 ↔ F2,0, F1,−1 ↔ F3,−1. Generally For |m| ≤ L − 2, there
are F`,m ↔ F`′,m with 0 ≤ ` ≤ `′ ≤ L. In the horizontal line m of the diagram (10), there are a total of
1
2 [(L − |m|)] + 1 coefficients in linear combination. There are a total of 1

2 (L2 + 3L − 6) F`,m coefficients
that we known only inside of linear combinations.

• Undetermined: F3,±2, F2,±1, F1,0, and F3,0. Generically, they are the known F`,m with ` − m odd,
whose spherical harmonics are zero in the equator, and the number of them is 1

2L(L + 1).

3. Development over the Circle C(α,β,γ)

In this section, we rotate this maximal circle as it is presented in equation (1) in order to obtain the generic
circle C(α,β,γ).

Under the rotation by means of the Euler angles (α, β, γ), the spherical harmonics showed in equation (4)
of each ` order, is transformed as:

Y`,m(θ′, φ′) = [R(α, β, γ) : Y`,m](θ, φ) =
∑̀

m′=−`

D`
m,m′(α, β, γ) : Y`,m′(θ, φ), (11)

where the rotation of the polar coordinates in the sphere is:



sin θ′ cos φ′

sin θ′ sin φ′

cos θ′


=




cosα − sin α 0
sin α cos α 0

0 0 1






cos β 0 sin β
0 1 0

− sin β 0 cos β


×




cos γ − sin γ 0
sin γ cos γ 0

0 0 1






sin θ cosφ
sin θ sin φ

cos θ


. (12)

And the coefficients of the linear combination are the functions D of Wigner, D`
m,m′(α, β, γ), which is factorized

as:
D`

m,m′(α, β, γ) = e−imαd`
m,m′(β)e−im′γ . (13)
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In terms of phases, for α and γ, and the little-D of Wigner, d`
m,m′(β), given by:

d`
m,m′(β)=

√
(`+m)!(`−m)!(`+m′)!(`−m′)!

∑

k

(−1)m−m′+k (sin 1
2β)2k+m−m′

(k+m−m′)!k!
(cos 1

2β)2`+m′−m−2k

(`−m−k)!(`+m′−k)!
. (14)

The k index of the addition takes the integer values among the values: max(m′−m, 0) ≤ k ≤min(`−|m|, `−|m′|).
The little-d coefficients satisfy many relationships, such as:

d`
m,m′(β) = d`

m,m′(−β) = d`
−m′,−m(β) = (−1)m−m′

d`
−m,−m′(β), (15)

and they are related with the spherical harmonics by:

Y`,m(θ, φ) =

√
2L + 1

4π
d`

m,0(θ)e
jmφ. (16)

They satisfy recurrence S of three terms in m and m′:
√

(`−m′)(`+m′+1) sin βd`
m,m′+1(β)+2(m−m′cos β)d`

m,m′(β)+
√

(`+m′)(`−m′+1) sin βd`
m,m′−1(β) = 0 (17)

√
(`−m)(`+m+1) sin βd`

m+1,m′(β)−2(m′−m cos β)d`
m,m′(β) +

√
(`+m)(`−m+1) sin βd`

m−1,m′(β) = 0 (18)

The harmonics Y`,m are transformed as a column vector. Under the rotation matrix ‖D`
m,m′‖, then, the

coefficients F`,m of the series (4), that we are trying to find, are transformed as a row vector:

F ′`,m = [R(αj , βj , γj) : F ]`,m =
∑̀

m′=−`

F`,m′Dm′,m(α, β, γ). (19)

The equator has been transformed in the circle C(α,β,γ), nd over it, we make the measurements/calculations of
the corresponding coefficients G

(α,β,γ)
m , in the same way as in G0

m, given by equation (10). So, we have, as in
(9):

G(α,β,γ)
m =

L∑
`=|m|
`−m even

F ′`,m y`,m =
L∑

`=|m|
`−m even

y`,m

L∑

m′=−`

F`,m′D`
m′,m(α, β, γ). (20)

The arrangement of the two additions can not be made directly, but in generic form, it can be written in terms
of the column vectors:

F0,0, F1,· :=




F1,1

F1,0

F1,−1


 , F2,· :=




F2,2

F2,1

F2,0

F2,−1

F2,−2




, . . . F`,· :=




F`,`

F`,`−1

F`,`−2

...
F`,−`




, (21)

and the row vectors:
D`
·,m := (D`

`,m D`
`−1,m D`

`−2,m . . . D`
−`,m). (22)

The equations (20), which related to the spherical harmonic coefficients F`,m that we are trying to find, and
the measured/calculated coefficients Gm ≡ G

(α,β,γ)
m over the maximal circle, are obtained from equation (10)

changing F`,m by F ′`,m in accordance with equation (19). The sub-matrix representation can be compared with
the case L = 3:




G
(ω)
3

G
(ω)
2

G
(ω)
1

G
(ω)
0

G
(ω)
−1

G
(ω)
−2

G
(ω)
−3




=




0 0 0 y3,3D
3
¦,3

0 0 y2,2D
2
¦,2 0

0 y1,1D
1
¦,1 0 0

y0,0 0 y2,0D
2
¦,0 0

0 y1,−1D
1
¦,−1 0 y3,−1D

3
¦,−1

0 0 y2,−2D
2
¦,−2 0

0 0 0 y3,−3D
3
¦,−3







F0,¦

F1,¦

F2,¦

F4,¦




. (23)
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The matrix is not square, it has 7 rows and its 4 columns represent the 1 + 3 + 5 + 7 = 16 columns of the
developed matrix, which generically is of (2L + 1)× (L + 1)2.

When we calculate the elements of the matrix (23), we use the properties y`,m = y`,−m and the recurrence
property mentioned in equation (15).

4. Equation Systems
Over the equator and in respect to the Greenwich meridian, the equation system (23) obtains again it most

simple representation, as in equation (10), since D`
m,m′(0, 0, 0) = δm,m′ After each rotation, however, the number

of determined, in linear combination and the undetermined coefficients are the same (for L = 3, 4, 6 and 6).
And 2L + 1 < (L + 1)2 for L < 0.

Considering now, several measurement circles C(ωj), j = 1, 2, . . . , Nc, with orientation ωj = (αj , βj , γj). For
each Nc and L, we will have a set of equations of the form (23)–(20):

G(ωj)
m =

L∑
`=|m|
`−m even

y`,m D`
•,m(ωj) F`,• . (24)

They can be written using the double indexes (j and m) and (` and m′) for enumerate the arrows and columns
of the matrix Nc(2L+1)×(L+1)2:

G = MF (25)

where G = ‖Gj,m‖ , Gj,m = G
(ωj)
m , M = ‖Mj,m;`,m′‖ , Mj,m;`,m′ = y`,mD`

m′,m(ωj), F = ‖F`,m′‖ .

5. Conclusions
The problem of determining the spherical harmonics of the field F (θ, φ) over the sphere can be considered as

an optimization problem, where there are Nc systems of 2L + 1 simultaneous equations with (L + 1)2 variables.
If the observations of F (θn, φn) ⇒ F

(ωj)
m ⇒ G

(ωj)
m are not accurate, we will need to adjust to the harmonic

coefficients F`,m by minimal square or other algorithm.
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