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Far-field RCS Prediction from Measured Near-field Data over
Ground Plane

Y. Inasawa, S. Kuroda, S. Morita, H. Nishikawa, N. Yoneda, and S. Makino
Mitsubishi Electric Corporation, Japan

The far-field Radar Cross Section (RCS) measurement of the actual target requires a long measurement
range, which can be realized in the outdoor site. One of the problems in outdoor measurement is the difficulty
to avoid the effect of ground bounce because the difference between direct and ground-reflected path length is
very small. Some measurement sites realize the outdoor RCS measurement in a few kilometer range by the
exploitation of the ground bounce. The shorter measurement range may be preferable especially in Japan.

In this paper we evaluate the far-field RCS prediction technique from near-field RCS data measured over
the ground plane in order to find out the possibility of the measurement range reduction. We present the
results of the far-field RCS prediction from near-field data including the ground bounce. The near-field data
is measured on the metal ground plane in an anechoic chamber, not on the actual ground plane because the
fundamental characteristics of ground bounce would be evident. The predicted far-field RCS agrees well with
the computed far-field RCS for the measurement model with large dimension in horizontal direction. Whereas
the small prediction error for the measurement model with large vertical dimension is observed. The applicable
scope of the far-field RCS prediction technique over the ground plane is resolved.
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Estimation of Buried Pipes Diameter and Position by Ground
Penetrating Radar Scans

G. Borgioli, P. Falorni, L. Capineri, B. Morini, and S. Matucci
Università di Firenze, Italy

C. G. Windsor
116, New Road, East Hagbourne, OX11 9LD, UK

The interest of this study is concerned to the problem of determining the position and size of buried pipes
by using remote sensing methods like ultra-wide-band radar, which can measure the round trip time (time
of flight ToF) of a pulsed wave by an antenna placed just above the surface (yi). In this study we consider
the physical approximation that the diffracted field from the pipe can be received over a wide angle range of
antenna positions and so the time of flight information can be measured for several incident field angles. It is
common to find in practice pipes that are buried at about one meter under a road with size that is comparable
to few radar wavelengths and for them the simple point like scatterer approximation for the time of flight
equation doesn’t approximate well the experimental data. The aim of this work is to study the feasibility of
robust solving methods for the hyperbolic equation of the time of flight, which contains in the most general case
four unknown: pipe radius (R), position (lateral y0, depth z0), and propagation velocity (v). A mathematical
solution of the system of non linear equations is presented. The derived solution has the advantage to be linear
for the solution of a new set of unknown (ψ = Rv, σ = v2 and y0). Only the solution for z0 remains non linear.
From the numerical point of view the solution of the linear system is straightforward and the sensitivity to
measurements errors superimposed to yi and ToF has been carried out. The application of the solving method
to simulated data for defined values of sampling time and noise has shown the difficulties of accurate estimation
of pipes diameter while the lateral position y0 and velocity have been well approximated by the centroid of the
distribution of the solutions. Numerical methods for solving this problem are discussed and data are presented
on simulated and experimental data. The accurate estimation of the four unknowns together is important not
only for devising advanced non destructive testing methods but also for providing information about the soil
velocity distribution that can be exploited by inversion methods in the time domain (linear SAR).
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The Parallelization of a 2D Floating Random-walk Algorithm for
the Solution of the Nonlinear Poisson-boltzmann Equation

K. Chatterjee
Massachusetts Institute of Technology, USA

J. Poggie
Wright-Patterson Air Force Base, USA

This paper presents the parallelization of a two-dimensional floating random walk (FRW) algorithm for the
solution of the nonlinear Poisson-Boltzmann (NPB) equation. Historically, the FRW method has not been
applied to the solution of the NPB equation and other important nonlinear equations. This can be attributed
to the absence of analytical expressions for volumetric Green’s functions. Previous studies [1] using the FRW
method have examined only the linearized Poisson-Boltzmann equation. Approximate volumetric Green’s func-
tions have been derived with the help of perturbation theory, and these expressions have been incorporated
within the FRW framework. A unique advantage of this algorithm is that it requires no discretization of either
the volume or the surface of the problem domains. Furthermore, each random walk is independent, so that
the computational procedure is highly parallelizable. In our previous work [2, 3], we have presented preliminary
results for our newly developed one- and two-dimensional FRW algorithm. We now present the results of the
parallelization of the two-dimensional algorithm, with its finite-difference based validation. The solution of the
NPB equation has many interesting applications, including the modeling of plasma discharges, semiconductor
device modeling and the modeling of biomolecular structures and dynamics.
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Reduction of FDTD Simulation Time with Modal Methods

D. A. Gorodetsky and P. A. Wilsey
University of Cincinnati, USA

Abstract—In order to simulate electromagnetic phenomena at high frequencies, full wave solvers such as the
FDTD method must be used. An alternative to the conventional FDTD method is to compute the zero state
response with convolution. Convolution results in an increased computation time with every time step. By
performing eigenmodal decomposition of the inputs, a constant time for the convolution can be achieved. We
show how the solution can be constructed analytically in terms of the eigenvalues and the eigenvectors of the
state transition matrix.

1. Introduction
FDTD is an evolutionary scheme that solves Maxwell’s equations in the time domain [1, 2]. The evolution

continues until steady state or stability in the output is achieved. Schemes of this type are often used when the
analytical solution to an electromagnetic problem is prohibitive. Problems to be solved with FDTD are abundant
in simulations of aircraft radar cross section at high frequency, microwave ICs, optical pulse propagation,
antennas, bioelectromagnetic systems, bodies of revolution, etc. [1]. Situations where it is important to model
on-chip interconnect include various microwave circuits such as amplifiers and optoelectronic circuits fabricated
in CMOS technology. Reference [3] discusses the design of on-chip waveguides at optical frequencies and
reference [4] discusses microwave frequencies. Such real-life problems often require grids with very large numbers
of points, due to fine features of the simulated objects and high excitation frequencies. The end result of the
fine grids is unreasonable simulation time. With the method proposed in this paper it may be possible to reduce
this simulation time to a more acceptable level.

The starting point for the FDTD solution can be the initial conditions, such as an excitation signal. If the
solution grid is partitioned into sub grids (i.e., for distributed computation) each containing N field variables,
then the starting point is either the initial conditions or the inputs from the adjacent sub grids. We use the
N × 1 vector Q(n) to denote the state of every electric and magnetic field variable in the sub grid. The N ×N
state transition matrix A(n− i) is used to obtain the state at time n from the state at time i. We also define
the N × 1 input vector X(n), to represent the inputs to the sub grid at time n. The manipulation of these
matrices in order to get the output of the sub grid, also called a module, was discussed in [5] and only the basic
results are given here.

If the inputs are combined in X(n), an I × 1 vector, then Y(n), the O × 1 output vector of the module is
given as:

Y(n) = [CA(n)B] ∗ X(n) (1)

where the ∗ symbol represents convolution, and the term in brackets is the impulse response h(n) of the FDTD
module. From the results in [5] and from Equation (1) we can observe that the computing time grows with
every time step, due to the properties of convolution. Therefore this method is useful only at early stages in
the simulation when the number of inputs is small, and the convolution workload does not exceed the time to
simulate the module with the standard FDTD.

A strategy to overcome this limitation for the TLM method was discussed in [6]. It involves writing each
entry in the location (i, o) of the impulse response matrix as a sum of the eigenvalues of the state transition
matrix as follows:

h(i, o, n) =
P∑

p=1

biopλ
n
p =

P∑
p=1

biop |λp|nejωpn∆t (2)

This can be interpreted as the sum of P matrices, each modulated by a different eigenvalue λp. Instead of
requiring the storage of the entire history of the inputs, this method requires storage of P matrices, where P is
some fraction of N , as will be described later in this paper. This method takes a constant amount of time for
every time step of the algorithm, with the number of multiplications given by IOP. In this paper we propose an
alternative method that involves decomposing the input vector into a sum of eigenvectors. With the proposed
method, the number of multiplications is reduced to OP.
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2. Proposed Method
A technique to express the state Q(n) as a superposition of eigenvectors and to solve for the zero-input

response was discussed in [7]. We propose the extension of that work to the zero-state response. In [7] the
initial state is written as:

Q(0) = a0y0 + a1y1 + . . . + aNyN (3)

where yk are the eigenvectors of the state transition matrix. Using Equation (3), the evolution in time can be
expressed as:

Q(n) = (λ0)na0y0 + (λ1)na1y1 + . . . + (λN )naNyN (4)

Our modification involves expressing the inputs as follows:

X(0) = a00y0 + a01y1 + . . . + a0NyN

X(1) = a10y0 + a11y1 + . . . + a1NyN

. . . .

. . . .
X(T ) = aT0y0 + aT1y1 + . . . + aTNyN

(5)

With the inputs expressed as in Equation (5), the convolution will involve keeping only a sum for each column
as shown below:

Y(1) = h(1)X(0)
= λ0a00y0 + λ1a01y1 + . . . + λNa0NyN

= s10y0 + s11y1 + . . . + s1NyN

Y(2) = h(2) X(0) + h(1)X(1)
= λ0s10y0 + λ1s11y1 + . . . + λNs1NyN

+ λ0a10y0 + λ1a11y1 + . . . + λNa1NyN

= s20y0 + s21y1 + . . . + s2NyN

(6)

From Equation (6) it is clear that a running sum of each column is kept and that convolution involves the
multiplication of each column by its eigenvalue. In general the number of multiplications will depend on the
number of entries in the yk vectors and N , the total number of points in the module. Assuming that P out of
N eigenvectors are kept for the solution and the remaining ones are discarded, that the size of Y is O× 1, thus
the number of multiplications per time step is reduced to OP.

The complex eigenvalues have a non-zero characteristic frequency obtained by finding the phase angle of
the eigenvalue and indicated by Ωi = 2πfi. The corresponding frequency domain frequency is given by ωi =
ΩI/∆t [7]. By properly selecting p, eigenmodes that satisfy the criteria Ωi > 2πp can be eliminated since it is
known that the discretization mechanism of the numerical simulation does not properly propagate these higher
frequencies [9]. Adhering to the constraint that only wavelengths that are greater than 10 times the length of
a side of a cell can be propagated allows p to be set at 1/10. After the elimination, P indicates the number of
remaining eigenmodes.

Hence, the storage of the complex eigenvectors will take up the equivalent of 2OPk1 bytes, where k1 is the
number of bytes per double. As can be seen from Equation (6), during every time step two multiplications
must be performed for every complex double that is stored. Also, the solution of Equation (5) requires 4OPk1

multiplications because the coefficients will in general be complex. Therefore, neglecting additions, every cycle
will take roughly 8OPk2 milliseconds, where k2 is the time per multiplication.

3. Results
A module with one interface was analyzed. The dimensions of this module were 1 × 20 × 2 cells. Because

the field was assumed zero on the boundary, the module contained only 175 points that participated in the
calculation. This resulted in 175 eigenvalues, 116 of which consisted of 58 complex conjugate pairs while the
remaining ones were either zero or unity and could be discarded. By setting p = 0.1, all but one of the complex
conjugate pairs were discarded.

The module was attached to the terminating face a parallel plate waveguide structure that was simulated
with the conventional FDTD and with the algorithm presented in this paper. At the excitation face a constant
plane wave source of 10GHz. was introduced. The dimensions of the waveguide without the module were
58× 20× 2 cells, which translates to the dimensions of 2× 0.0229× 0.002 wavelengths at 10 GHz. The electric
field at various points along the length of the waveguide was obtained for the first 10,000 iterations. The results
were always virtually identical between the conventional FDTD and our methods. In Figure 1 the electric field
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variation with time in cell (29, 10, 1) is shown. Figure 2 demonstrates that the simulation results match the
predictions from electromagnetic theory.

Figure 1: Comparison of results of conventional and
proposed methods. The point is located in the mid-
dle of the waveguide.
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Figure 2: The electric field in the transverse direc-
tion. The results correctly indicate the presence of
the TM0 mode.

In order to demonstrate the case when the results were not identical, a module with dimensions of 3×20×2
cells was utilized. This translated to 525 points. In order to get accurate results from the larger module, p
had to be increased to 0.14 in this case. This caused the final system to end up with 16 complex conjugate
pairs. The electric field variation in the cell adjacent to the excitation face of the waveguide is displayed in
Figure 3. The comparison with the situation where the module produces zero output proves the functionality
of the module. Figure 4 shows the small difference between the output of the module at its interface and the
electric field produced by the conventional FDTD method at the same point. This difference is barely noticeable
in the beginning of the simulation and increases as the simulation progresses in time.
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Figure 3: The electric field (Ez) near the waveguide
entrance. The overall effect of the module on the
simulation can be observed.
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Figure 4: The electric field at the module interface.

4. Conclusion
In this paper we discussed the full-wave simulation of interconnect that is found on high frequency integrated

circuits. To speed up the simulation, we developed a recursive algorithm for convolution. This recursive
algorithm is based on the modal decomposition approach to the impulse response of the finite-difference time-
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domain numerical simulation. Its advantages over an earlier approach [5] is that the storage of the history of
the impulse responses (IOT) is no longer required. The only storage required is that of the eigenvectors (2OP),
eigenvalues (2P ), and coefficients (2P ). Another improvement over [5] is that the storage of the inputs (IT) is
replaced by the much smaller storage of the coefficients. In regards to the approach published in [6], the storage
requirement is improved from ∼ (IOP ) to ∼ (OP ) and the number of multiplications per time step is improved
in the same manner.

The methods discussed in this paper for interconnect can be extended to a majority of other electromagnetic
simulation scenarios such as antennas and radar cross section simulation. An important application is the use
of the FDTD method to simulate the propagation of electromagnetic waves in semiconductor devices. This is
done by coupling the electron transport equations with Maxwell’s equations [10].

Future work will involve the investigation into the techniques, such as change of basis, with which multiple
modules can be combined together to reduce the overall simulation time. As was seen in the results, the
relationship between the N and P varies with the size of the module as well as the choice of p. More insight into
this relationship will be required in order to be able to optimize the module for speed or accuracy requirements.
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Approximate Decomposition for the Solution of Boundary Value
Problems for Elliptic Systems Arising in Mathematical Models of

Layered Structures

Y. Shestopalov and N. Kotik
Karlstad University, Sweden

Abstract—We present an alternative approach to the solution of boundary value problems (BVPs) for elliptic
systems arising in mathematical models of layered structures. The main idea of the method is to consider
auxiliary problems for differential operators separated componentwise and to reduce them to a sequence of
iterative problems such that each can be solved (explicitly) by the Fourier method. The solution sequence is
then constructed with the help of a contracting transfer operator evaluated explicitly. This method facilitates
both analytic and numerical solutions and can be generalized to more complicated mixed BVPs for semilinear
partial differential operators.

1. Introduction
The processes which take place in layered structures may be described in terms of boundary value problems

(BVPs) for elliptic systems [1, 2], among them are the Laplace, Helmholtz, and Lamè equations, equipped
with appropriate boundary conditions of mixed type, including boundary–value contact problems (BVCPs)
formulated and investigated in [3].

The simplest examples of BVPs with boundary conditions of mixed type in electromagnetics and acoustics
[1, 2] arise when the Dirichlet (or Neumann) conditions are stated on one part of the boundary and the Neumann
(Dirichlet) condition on its complement. Such problem are formulated, e. g., in mathematical models of the wave
propagation in transmission lines [1]. A decomposition for the solution to the BVPs for the equation systems can
be applied when the differential operator can be separated while the boundary value (trace) operators are mixed
componentwise on the boundary. In Section 3 we present an example of such a separation (decomposition).

In this work we present an approach for analytical and numerical solution of BVPs in thin layers based on
approximate decomposition. The main idea of this method is to simplify the general BVP and to reduce it to a
chain of auxiliary problems and then to a sequence of iterative problems such that each of them can be solved
(explicitly) by the Fourier method.

2. Formulation
We present the method for the case of a BVCP [3] for the system of Lamè equations in a thin layer (band)

equipped with mixed boundary conditions. To this end, consider an elastic band S = {−∞ < x1 < +∞, 0 <
x2 < h} with Poisson’s ratio ν situated on the stiff base x2 ≡ 0. The boundary lines x2 = h and x2 ≡ 0
are denoted, respectively, by K1 and K2 (Fig. 1); ω =

⋃N
m=1 ωm, where ωm = [ am, bm], is a set of disjoint

segments; and ω∗ = K1 \ ω. Distribution of shearing strains on line K1, displacements on ω, and elongations
on ω∗ are given. We denote by uj and Fj , (j = 1, 2) the displacements and respectively projections of the
body forces in directions xj . The determination of uj reduces to a mixed BVP [3] for the Lamè equations in S

∆uj + k0
∂

∂xj

(∂u1

∂x1
+

∂u2

∂x2

)
= Fj , k0 =

1
1− 2ν

, j = 1, 2 (1)

with the boundary conditions

u2 = 0,
∂u1

∂x2
+

∂u2

∂x1
= 0 on K2,

∂u2

∂x1
+

∂u1

∂x2
= f1(x1) on K1,

u2 = f2(x1) on ω,

(k0 − 1)
∂u1

∂x1
+ (k0 + 1)

∂u2

∂x2
= f3(x1) on ω∗

(2)
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and the conditions at infinity

Φs(u1, u2) =
∫

S

ΠS ds < ∞,

Πs = (k0 − 1)
( 2∑

j=1

∂uj

∂xj

)2

+ 2
2∑

j=1

(∂uj

∂xj

)2

+
(∂u1

∂x2
+

∂u2

∂x1

)2

,

(3)

BVP (1)–(3) has the unique classical solution if the boundary functions are sufficiently smooth. Namely, the
following statement is valid (see [3]):

If the functions F1 ∈ Lp(S), F2 ∈ Lp(S), f1 ∈ Lp(K1), f3 ∈ Lp(ω∗), p > 1 (f ∈ Lp(Ω) if |f |p is integrable
over Ω) and function f2 ∈ Cq(K1), q > 3, is a smooth (q-times continuously differentiable) compactly-supported
function with supp f2 ∈ ω then problem (1)–(3) is uniquely solvable if and only if

∫

K1

f1 dx1 +
∫

S

F1 dS = 0

and the solutions uj ∈ C2(Πah)∩C(Π̄ah) in every rectangle Π = Πah = {(x1, x2) : 0 < x1 < a, 0 < x2 < h}.
3. Approximate Decomposition

Consider a simplified version of the problem (1)–(3) which will be called problem A: body forces F1,F2 ≡ 0;
shearing stresses f1 ≡ 0 on K2; and normal stresses f3 ≡ 0 on ω∗. Consider this problem in a long rectangle
Πah bounded by the curve Γ = K̂1

⋃ K̂2

⋃H1

⋃H2, where K̂i = Ki

⋂{0 < x1 < a}, (i = 1, 2); ω̂∗ = ω∗
⋂{0 <

x1 < a}; H1 = {x = (x1, x2) : x1 = 0, 0 < x2 < h}, H2 = {x = (x1, x2) : x1 = a, 0 < x2 < h}; and
u = (u1, u2) denotes the vector of displacements. Introduce the trace operators L(1) and L(2) specifying the
boundary conditions on ω̂, ω̂∗ and Γ:

L(1)u =

(
l
(1)
11 0
0 l

(1)
22

)
u,

l
(1)
11 u1 =

∂u1

∂ν
(x ∈ Γ), l

(1)
22 u2 = u2 (x ∈ ω ∪ K̂2 ∪H1 ∪H2)

(4)

is the operator of the Neumann–Dirichlet boundary conditions, and

L(2)u =

(
l
(2)
11 l

(2)
12

l
(2)
21 l

(2)
22

)
u,

l
(2)
11 u1 = 0, l

(2)
12 u2 =

∂u2

∂τ
(x ∈ Γ),

l
(2)
21 u1 = αu1,1 l

(2)
22 u2 = u2,2 (x ∈ ω̂∗),

(5)

where

∂

∂τ
=





∂

∂x1
, x ∈ K1

⋃K2

∂

∂x2
, x ∈ H1

⋃H2

,
∂

∂ν
=





(−1)i ∂

∂x2
, x ∈ Ki

(−1)i ∂

∂x1
, x ∈ Hi

, α =
k0 + 1
k0 − 1

. (6)

The operator Lu = L(1)u + L(2)u specifies the boundary conditions of problem A in the form Lu = f ,
with f = (0, f̂2(x)) and

f̂2(x) =

{
f2(x1), x = (h, x1) ∈ ω,

0, x ∈ Γ\ω,
(7)

being a differentiable function on Γ with a compact support supp f2 ⊆ ω. Introduce matrix differential operators
of the system in problem (1)–(3) and problem A and rewrite the latter as

Du = 0, Lu = f , (8)
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where

D = ∆ + k0A, ∆ =
(

∆1 0
0 ∆2

)
,

∆1u1 = (k0 + 1)
∂2u1

∂x2
1

+
∂2u1

∂x2
2

, ∆2u2 =
∂2u2

∂x2
1

+ (k0 + 1)
∂2u2

∂x2
2

,

A =
(

0 1
1 0

)
∂2

∂x1∂x2
, f = (0, f̂2(x)).

(9)

Assuming that displacements u2 are absent on ω∗ write problem A in the form

Du = 0, L̂u = f , L̂ = L̂(1) + L̂(2), (10)

where L̂(1) = ‖l̂(1)ii ‖i=1,2 is defined as in (4) with the only difference that l̂
(1)
22 u2 = 1

2u2, x ∈ Γ, and L̂(2) has two
nontrivial components: l̂

(2)
21 defined in (5) and l̂

(2)
22 u2 = 1

2u2, x ∈ Γ.
Define the sequence {un} of vector-functions according to

∆u0 = 0, L̂(1)u0 = f0 =
(
− ∂f̂2

∂x1
, f̂2(x1)

)
, x1 ∈ ω,

∆un+1 = −k0Aun, L̂(1)un+1 = −L̂(2)un, n = 0, 1, 2, . . .

(11)

The limiting function (if exists) u = limn→∞ un (where the limit is determined with respect to an ap-
propriate norm) satisfies (8). In order to prove the existence consider BVP (11) for un+1 = (u(n+1)

1 , u
(n+1)
2 ).

Componentwise, (11) consists of two inhomogeneous BVPs for Poisson equation in the rectangle. The solution
to each problem can therefore be obtained as a sum of the corresponding volume and surface (line) potentials.
In the vector–operator form the relationship between two intermediate problems (11) can be represented as

un+1 = Kun, (12)

where K is a volume–surface integral operator defined in term of the potentials.
Applying the Schauder a priori estimates of the solution to BVPs for elliptic PDEs [4, 5], using the explicit

form of un+1 and properties of logarithmic and Green’s potentials [6, 7], one can show that

‖un+1‖C2(Π) 6 Mn

(‖un‖C2(Π) + ‖f2‖C2(ω)

)
, n = 1, 2, . . . , (13)

where constant Mn depends on the diameter of Πah and Mn → 0 if diam Πah → 0. Thus, operator K (12) is a
contraction in the space C2(Π)∩C(Π̄) of two-component vector-functions if the diameter of set ω, parameter h,
and the norm of boundary function f2 are sufficiently small. This implies the existence of the unique solution
u ∈ C2(Π) ∩ C(Π̄) to problem A.

This approximate decomposition can be applied to the solution of BVPs of the type (1), (2) for semilinear
systems with the differential operators Du = 4u +F(u, ux1 , ux2 , ux1x2), where F is nonlinear with respect to
u and uxi . Constructing the iterations similar to (11) or (12) and showing or assuming that the corresponding
transfer operator K is contraction, we obtain a recursive procedure (12) to determine displacements u.

4. Solution by the Fourier Method
One can obtain explicit solution to every intermediate BVP (11) in the form of Fourier series

u
(n+1)
2 =

∞∑
m=1

sin
πm

a
x1

(
dm sinh

πm
√

k0 + 1
a

x2 + em sinh
πm

a
√

k0 + 1
x2

)
,

u
(n+1)
1 =

∞∑
m=1

cos
πm

a
x1

(
gm cosh

πm

a
√

k0 + 1
x2 + qm cosh

πm
√

k0 + 1
a

x2

)
,

(14)

where

am = −
sinh

πmh

a
√

k0 + 1

sinh
πmh

√
k0 + 1

a

bm, bm =
fm

sinh
πmh

a
√

k0 + 1

, (15)
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fm = 2
a

a∫
0

f2(x1) sin πm
a dx1 are Fourier coefficients for the function f2 from boundary condition (2) and

dm =
√

k0 + 1
k0 + 2

bm, em =
(
1 +

√
k0 + 1

k0 + 2

)
bm,

gm =
√

k0 + 1
k0 + 2

bm, qm =
k0 + 3

(k0 + 2)
√

k0 + 1
ambm

(16)

are the Fourier coefficients obtained for (11) on the previous stage n.

Series (14) converge absolutely and uniformly in every rectangle Πδ
ah = {0 6 x1 6 a, δ 6 x2 6 h} with

0 < δ < h and admit term-wise differentiation arbitrary number of times. The rate of convergence is exponential.
In view of the explicit solution (14) it is reasonable to specify a boundary function f2(x1) in problem A and

(7) as a smooth compactly-supported function f2 ∈ Cp(R), p > 3, with supp f2 ∈ ω. One can consider, for
example, the case when f2(x1) is the so-called hat function of order p (a product of a polynomial in even powers
of argument that vanishes at the endpoints of ω and a Gaussian exponent) for which the Fourier coefficients can
be calculated explicitly. Such hat functions possess the properties of B–splines; therefore, one can approximate
or interpolate a smooth function on the line R with a finite support ω by a finite linear combination of hat
functions and apply the approximate decomposition with rapidly converging series solutions to BVPs with
virtually arbitrary boundary functions.

-

6

?

h

6

ω∗ a1 b1 a2 b2 aN bN

ω1 ω2 ωN

x1

x2

K1

K2

S

Figure 1: Statement of the problem. Figure 2: The function f2.

Figure 3: The displacement u1. Figure 4: The displacement u2.
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5. Numerical
Let us present some qualitative results of numerical–analytical solution to problem A (a simplified version of

(1)–(3) considered in a long rectangle) obtained using approximate decomposition (first iteration); the profiles of
boundary displacements are taken as hat functions presented in Fig. 2. Fig.s 3 and 4 show u1 and u2 calculated
in the case of a/h = 10 and two disjoint segments ω = ∪2

i=1[xSi
− pi, xSi

+ pi].
Values of displacement u1 in Fig. 3 are zero at xS1,2 because these points shift only in x2-direction; values in

the support intervals (xS1 − p1, xS1) and (xS2 − p2, xS2) are negative because these points shift in the opposite
direction; values in the intervals (xS1 , xS1 + p1) and (xS2 , xS2 + p2) are positive because these points also shift
in the x2-direction and take maximum and minimum at the respective points. Function u2 in Fig. 4 takes only
positive values in the intervals (xS1 − p1, xS1 + p1) and (xS2 − p2, xS2 + p2), maximum and minimum are at
the points xS1 and xS2 respectively.

6. Conclusion
We have developed a method of approximate analytical–numerical solution to BVPs for elliptic system in

parallel-plane layers based on decomposition of boundary value conditions. An advantage of the method is the
possibility of explicit determination and fast computation and visualization of all components at every point of
the layer. The method can be extended to wide families of BVPs using spline-type approximations based on
hat functions.
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Generation of Diverse Time-series Data though Monitoring a
Death-multiple Immigration Population Model

J. O. Matthews, K. I. Hopcraft, and E. Jakeman
University of Nottingham, UK

Discrete population models have been employed in combination with random walk techniques to model
successfully non-Gaussian clutter occurring in coherent imaging systems [e.g., 1, 2]. The method models the
coherent returns from an ensemble of scatterers as a random walk comprising a fluctuating number of steps.
Non-Gaussian limiting distributions obtain when the stochastic process describing the discrete distribution
is subject to clustering. In particular, a simple mathematical paradigm for turbulence is the birth-death-
immigration process, where turbulent eddies nucleate (immigration), are shed (birth) and dissipate (death). The
equilibrium distribution is then of the negative binomial class, this being the discrete analogue of continuous
gamma-distributed fluctuations, and the clutter is then K-distributed [2]. Here we discuss the properties of
a death-multiple immigration model [3], which allows for pairs, triplets, . . . n-tuplets to enter the population,
and which has the useful property of enabling a very wide class of equilibrium distributions to be constructed,
including the negative-binomial class and distributions with scale free-characteristics. Allowing “individuals”
to leave the population creates a series of events in time [4], whose characteristics can be tailored to exhibit a
wide range of behaviours, together with correlation properties including non-Poissonian processes and fractals.
The utility to model non-Gaussian fractal processes using the technique will be discussed [5], together with the
wider implications for the generation of time series.
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Implementation of the PML in the CIP Method

Y. Ando and M. Hayakawa
The University of Electro-communications, Japan

The constrained interpolation profile (CIP) method, a numerical solver for multiphase problems, can be
applied to electromagnetic problems. The method is based on the upwind scheme for the finite difference
method, but the variables to be calculated are not only the values of the electromagnetic fields, but also the
spatial derivatives. Those variables are used to interpolate the profiles between the grids by means of cubic
polynomials, and to calculate them at the next time step with good precision.

Invoking the directional splitting in the Maxwells equations allows us to treat electromagnetic fields as two
one-way waves in each direction, and to reduce them into advection equations. For example, in ±x-direction of
a 2-dimensional problem with ∂

∂z = 0, the equations in free-space are given by

∂f±(r, t)
∂t

± c
∂f±(r, t)

∂x
= 0,

∂g±(r, t)
∂t

± c
∂g±(r, t)

∂x
= 0, (1)

where f±(r, t) =
√

εEz ∓√µHy, g± = ∂f±

∂x , and c is the velocity. The reduced equations can be solved by using
CIP method.

The CIP method has an absorbing boundary condition (ABC) as good as the 1st Mur’s ABC in its nature.
But, it is necessary to develop the ABC with better performance if required. In this study, we examine the
perfect matched layer (PML) in the CIP scheme.

The application is straightforward, but some considerations are necessary in the computation because the
implementation yields non-advective terms:

∂f±(r, t)
∂t

± c
∂f±(r, t)

∂x
= −s(x)f±(r, t),

∂g±(r, t)
∂t

± c
∂g±(r, t)

∂x
= −∂{s(x)f±(r, t)}

∂x
, (2)

where s(x) is the normalized conductivity of the PML. One of the solution is obtained by dividing the equations
into advection phase:

∂f±(r, t)
∂t

± c
∂f±(r, t)

∂x
= 0,

∂g±(r, t)
∂t

± c
∂g±(r, t)

∂x
= 0, (3)

and then, non-advection phase

∂f±(r, t)
∂t

= −s(x)f±(r, t),
∂g±(r, t)

∂t
= −∂{s(x)f±(r, t)}

∂x
= −ds(x)

dx
f±(r, t)− s(x)g±(r, t). (4)

Let f±,∗ denote the results of advection phase. The first equation can be evaluated analytically:

f±,n+1 = f±,∗ · e−s(x)∆t, (5)

where f±,n+1 stands for the value at the next times step. The evaluation of the second equation in Eq. (4) can
be performed numerically:

g±,n+1 = g±,∗ −∆t{−ds(x)
dx

f±,∗ − s(x)g±,∗}. (6)

The successful formulation of the PML in the CIP method enables us to absorb the outgoing waves as much
as required by increasing the layers. The numerical experiments show the good performance of the present
formulation.
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Some Elliptic Traveling Wave Solutions to the Novikov-Veselov
Equation

J. Nickel1, V. S. Serov2, and H. W. Schürmann1

1University of Osnabrück, Germany
2University of Oulu, Finland

Abstract—An approach is proposed to obtain some exact explicit solutions in terms of elliptic functions to the
Novikov-Veselov equation (NVE[V (x, y, t)] = 0). An expansion ansatz V → ψ =

∑2
j=0 ajf

j is used to reduce
the NVE to the ordinary differential equation (f ′)2 = R(f), where R(f) is a fourth degree polynomial in f .
The well-known solutions of (f ′)2 = R(f) lead to periodic and solitary wave like solutions V . Subject to certain
conditions containing the parameters of the NVE and of the ansatz V → ψ the periodic solutions V can be used
as start solutions to apply the (linear) superposition principle proposed by Khare and Sukhatme.

1. Introduction
The Novikov-Veselov (NV) equation [1] as a “natural” two-dimensional generalization of the celebrated

Korteweg-de Vries (KV) equation [2] has relevance in nonlinear physics (in particular in inverse scattering
theory) [3, 4] and mathematics (cf. e. g., [5, 6]).

As regards to physics, Tagami [3] derived solitary solutions of the NV equation by means of the Hirota
method. Cheng [4] investigated the NV equation associated with the spectral problem (∂x∂y + u)ψ = 0 in
the plane and presented solutions by applying the inverse scattering transform. With regards to mathematics,
Taimanov [5] investigated applications of the (modified) NV equation to differential geometry of surfaces. Fer-
apontov [6] used the (stationary) NV equation to describe a certain class of surfaces in projective differential
geometry (the so-called isothermally asymptotic surfaces).—Apart from these applications solutions of the NV
equation are interesting in and of themselves.

In the following we derive some solutions of the NV equation by combining a symmetry reduction method
[7, 8] and the Khare-Sukhatme superposition principle [9–12].

2. Elliptic Solutions

2.1. General Considerations
Following Novikov and Veselov [1] we consider the system

Vt = ∂3V + ∂
3
V + 3∂(uV ) + 3∂(uV ), (1)

∂u = ∂V, (2)

where ∂ =
1
2

(∂x − i∂y), ∂ =
1
2

(∂x + i∂y) are the Cauchy-Riemann operators in R2. System (1), (2) is equivalent
to

Vt =
1
4

(Vxxx − 3Vxyy) + 3V (u1x + u2y) + 3(u1Vx + u2Vy), (3)

Vx = u1x − u2y, −Vy = u1y + u2x (4)

with u(x, y, t) = u1(x, y, t)+iu2(x, y, t), where u is defined up to an arbitrary holomorphic function ϕ = ϕ1+iϕ2

so that ϕ1x = ϕ2y, ϕ1y = −ϕ2x. (4) imply

u1 = −2∂−1
x ∂yD̃V + V + ϕ1, u2 = −2D̃V + ϕ2. (5)

The operator D̃ := (∂−1
x ∂y + ∂−1

y ∂x)−1 is well-defined [13, (6)], so that u1, u2 can be inserted into (3).
Traveling wave solutions

V (x, y, t) = ψ(z), z = x + ky − vt (6)

imply ∂−1
x = k∂−1

y and thus lead to ϕ ≡ const. = C0 + iC1. Hence, (3) can be written as

− vψz =
1− 3k2

4
ψzzz + 6

1− 3k2

k2 + 1
ψψz + 3ψz(C0 + C1k). (7)
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Following an approach outlined previously [7, 8, 14] it seems useful to find elliptic (traveling wave) solutions
of the form (p = 2 follows from balancing the linear term of highest order with the nonlinear term in (7))

ψ(z) =
p=2∑

j=0

ajf(z)j (8)

with [15] (
df(z)
dz

)2

= αf4 + 4βf3 + 6γf2 + 4δf + ε ≡ R(f). (9)

The coefficients a0, a1, a2, α, β, γ, δ, ε are assumed to be real but otherwise either arbitrary or interrelated.
Inserting (8) into (7) and using (9) we obtain a system of algebraic equations that can be reduced to yield

the nontrivial solutions

α = 0, β = − 2a1

1 + k2
, γ = − 4a0

1 + k2
+

2F

3(3k2 − 1)
, δ, ε arbitrary,

subject to a2 = 0, 3k2 − 1 6= 0, (10)

α = − 2a2

1 + k2
, β = − a1

1 + k2
, γ =

F

6(3k2 − 1)
− a2

1 + 4a0a2

4a2(1 + k2)
,

δ =
1

8a2
2

(
a3
1 − 12a0a1a2

1 + k2
+

2a1a2F

3k2 − 1

)
, ε arbitrary,

subject to a2 6= 0, 3k2 − 1 6= 0 (11)

with F = v + 3C0 + 3kC1.
Thus, the coefficients of the polynomial R(f) are (partly) determined leading to solutions f(z) of (9). As is

well known [15, pp. 4–16], [16, p. 454] f(z) can be expressed in terms of Weierstrass’ elliptic function ℘(z; g2, g3)
according to

f(z) = f0 +
R′(f0)

4
[
℘(z; g2, g3)− 1

24
R′′(f0)

] , (12)

where the primes denote differentiation with respect to f and f0 is a simple root of R(f).
The invariants g2, g3 of ℘(z; g2, g3) and the discriminant ∆ = g3

2−27g2
3 are related to the coefficients of R(f)

[17, p. 44]. They are suitable to classify the behaviour of f(z) and to discriminate between periodic and solitary
wave like solutions [8].

Solitary wave like solutions are determined by (cf. (12) and Ref. [18, pp. 651–652])

f(z) = f0 +
R′(f0)

4
[
e1 − R′′(f0)

24
+ 3e1csch2(

√
3e1z)

] , 4 = 0, g3 < 0, (13)

where e1 =
1
2

3
√
|g3| in (13).

In general, f(z) (according to (12)) is neither real nor bounded. Conditions for real and bounded solutions
f(z) can be obtained by considering the phase diagram of R(f) [19, p. 15]. They are denoted as “phase diagram
conditions” (PDC) in the following. An example of a phase diagram analysis is given in [14].
2.2. Periodic Solutions

At first the coefficients according to (10) are considered. For simplicity we assume ε = 0, so that f0 = 0 is a
simple root of (9). The solution (12) can be evaluated to yield

V (x, y, t) = a0 + a1
3(1 + k2)(1− 3k2)δ

(1 + k2)F + 6a0(1− 3k2) + 3(1 + k2)(1− 3k2)℘(x + ky − vt; g2, g3)
(14)

with g2, g3 according to (10) and [8].
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Evaluating (12) with coefficients according to (11) (with ε = 0 for simplicity) in the same manner we obtain
periodic solutions depending on a0, a1 and a2.
2.3. Solitary Wave like Solutions

To find the subset of solitary wave like solutions of the NV equation according to (10), (13) the discriminant

∆ must vanish. This is given if δ = 0 or δ = − (6a0(1− 3k2) + (1 + k2)F )2

8a1(1− 3k2)2(1 + k2)
.

For g3 < 0 we obtain solitary wave like solutions and here the PDC is fulfilled automatically for g3 < 0.

If δ = 0, ε = 0, f0 =
6a0(1− 3k2) + (1 + k2)F

2a1(3k2 − 1)
, we obtain (cf. (8), (13))

V (x, y, t) = a0 +
6a0(1− 3k2) + (1 + k2)F

2(3k2 − 1)
sech2

[√
− 6a0

1 + k2
+

F

3k2 − 1
(x + ky − vt)

]
. (15)

If δ = − (6a0(1− 3k2) + (1 + k2)F )2

8a1(1− 3k2)2(1 + k2)
, ε = 0, f0 = 0, (8) reads

V (x, y, t) = a0 +
6a0(1− 3k2) + (1 + k2)F

4(3k2 − 1)
tanh2

[√
F

2(1− 3k2)
+

3a0

1 + k2
(x + ky − vt)

]
. (16)

Subject to (10) (15), (16) represent general physical traveling solitary wave solutions of the NV equation for
ε = 0. While periodic solutions depend on a0 and a1, solitary solutions only depend on a0.

Solitary wave like solutions according to (11) can be obtained by an analogous procedure.

3. Superposition Solutions
Khare and Sukhatme proposed a superposition principle for nonlinear wave and evolution equations (NL-

WEEs) [9]. They have shown that suitable linear combinations of periodic traveling-wave solutions expressed by
Jacobian elliptic functions lead to new solutions of the nonlinear equation in question. Combining the approach
above with this superposition principle we have evaluated the following start solutions for superposition [20]

f(z) =





− 3γ+
√

9γ2−16βδ

4β dn2

(
1
2

√
3γ +

√
9γ2 − 16βδz,

2
√

9γ2−16βδ

3γ+
√

9γ2−16βδ

)
, βδ > 0, γ > 0,

4δ

−3γ+
√

9γ2−16βδ
sn2

(
1
2

√
−3γ +

√
9γ2 − 16βδz,

3γ+
√

9γ2−16βδ

3γ−
√

9γ2−16βδ

)
, βδ > 0, γ < 0,

− 3γ+
√

9γ2−16βδ

4β cn2

(
(9γ2−16βδ)

1
4√

2
z,

3γ+
√

9γ2−16βδ

2
√

9γ2−16βδ

)
, βδ < 0.

(17)

In (10) we choose ε = 0 for simplicity and thus, we obtain start solutions for superposition according to (17).
As an example we consider solutions of the form dn2 for p = 3, further results for cn2, sn2 and according to
(11) can be obtained in the same manner.

According to (8), (10) the start solution for superposition reads

V (x, y, t) = a0 + a1 A dn2(µ(x + ky − vt),m), (18)

with A, µ, m according to (17), so that the superposition ansatz can be written as

Ṽ (x, y, t) = a0 + a1 A

3∑

i=1

dn2

[
µ(x + k y − v3 t) +

2(i− 1)K(m)
3

,m

]
. (19)

Inserting Ṽ (x, y, t) (denoting di = dn
(
µ(x + ky − v3t) + 2(i−1)K(m)

3 ,m
)
) into (7) (v → v3) and using well

known relations for c2
i and s2

i [22, p. 16] leads to

6Aa1µm(1− 3k2)
(

µ2 − 2Aa1

1 + k2

) 3∑

i=1

cid3
i si − 12A2a2

1mµ(1− 3k2)
1 + k2

3∑

i=1

d2
i

3∑

j 6=i

cjdjsj (20)

−2Aa1µm

(
6a0(1− 3k2)

1 + k2
+ 3(C0 + C1k) + (2−m)(1− 3k2)µ2 + v3

) 3∑

i=1

cidisi = 0.
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Remarkably, µ2 − 2Aa1

1 + k2
vanishes automatically [20, (13)]. By use of [23], (21) reads

−2Aa1µm

(
6a0(1− 3k2)

1 + k2
+ 3(C0 + C1k) + (2−m)(1− 3k2)µ2 + v3

) 3∑

i=1

cidisi

−2Aa1µm

(
−12Aa1(1− 3k2)(m− 1 + q2)

(1 + k2)(1− q2)

) 3∑

i=1

cidisi = 0. (21)

Thus, the speed v3 in the superposition solution (19) is given by

v3 =
6a0(3k2 − 1)

1 + k2
− 3(C0 + C1k) + (2−m)(3k2 − 1)µ2 +

12Aa1(3k2 − 1)(m− 1 + q2)
(1 + k2)(q2 − 1)

. (22)

The start solution V and the superposition solution Ṽ are shown in Fig. 1.

-4 -2 2 4

1

2

3

4

5

6

V, V

z

V

V

Figure 1: V and Ṽ (cf. (18), (19)) for c = −1, k = 1, a0 = −1, a1 = −1, C0 = 1, C1 = 1, δ = 4 (therefore:
v3 = −8.66008).

4. Conclusion
For the NV equation we have shown that a rather broad set of traveling wave solutions according to (6),

(8) and subject to the nonlinear ordinary differential equation (9) can be obtained. Periodic and solitary wave
solutions can be presented in compact form in terms of Weierstrass’ elliptic function and its limiting cases (4 = 0,
g3 ≤ 0), respectively. The phase diagram conditions (PDC) yield constraints for real and bounded solutions.
Finally, it is shown that application of the Khare-Sukhatme superposition principle yields new periodic (real,
bounded) solutions of the NV equation.
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Source Representations of the Debye Potentials in Spherical
Coordinates

M. J. Lahart
U.S. Army Research Laboratory, USA

In a widely cited paper [1], Bouwkamp and Casimir derived the relationship between the Debye scalar
potentials and their charge and current sources. They did this by computing the electric and magnetic fields
associated with each of the potentials and using Maxwell’s equations to compute the charge and current sources.
Their derivation specified that the scalar potentials could only by defined outside a sphere that contained all of
the charge and current sources. Nisbet [2] challenged the need for this restriction and claimed that the Debye
potentials could be defined everywhere, including regions that contained charge and current sources.

This presentation examines the need to define the Debye potentials only in regions where the charge and
current sources are zero. Some possible definitions of scalar potentials in terms of magnetic and electric vector
potentials will be examined. It will be shown that, to be consistent with Maxwell’s equations, some definitions
require that the scalar potentials obey the wave equation, while others require that only the components of
the gradients of the potentials in two orthogonal directions obey the wave equation. In spherical coordinate
systems, only the latter type of definition is possible; potentials that obey the wave equation cannot be defined,
but potentials whose gradient components in the θ and φ directions can be. By expressing the Debye potentials
in terms of the magnetic and electric vector potentials and examining the consistency of the expressions with
Maxwell’s equations, it will be shown that one of the potentials can be defined in regions that contain charges
and currents and the other cannot.

For comparison, it will be shown that scalar potentials that obey the wave equation can be defined in
rectangular coordinates. Because of this, a pair of potentials can be defined in regions where charge and current
sources are present. An example will be given by expressing fields in a waveguide in terms of scalar potentials
and their charge and current sources.
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On the Stability of the Electromagnetic Field in Inhomogeneous
Anisotropic Media With Dispersion

N. V. Budko
Delft University of Technology, The Netherlands

A. B. Samokhin
Moscow University of Radioengineering and Electronics, Russia

From the electromagnetic point of view various meta-materials, optical crystals, geophysical formations, ice,
magnetized plasma, etc., can be described as inhomogeneous anisotropic media with dispersion. The interaction
of the electromagnetic field with such media can be studied by different analytical and numerical methods. When
a three-dimensional object is of finite extent and is situated in free space, then the method of choice is the Volume
Integral Equation (VIE) method, sometimes referred to as the Domain Integral Equation method (mathematical
literature) and the Discrete Dipole Approximation (physics).

In contrast to the one- and two-dimensional cases, where existence of the solution to the scattering problem
is a trivial question, in the three-dimensional case solution exists under certain conditions related to the physical
properties of the medium in question. Note that the sufficient uniqueness conditions are basically the same for
all cases. Previously we have shown that the singular integral operator of the VIE has an essential continuous
spectrum, which is given explicitly in terms of the constitutive parameters of an inhomogeneous object. Now
we shall extend this result to anisotropic media with dispersion. We shall also prove that in the quasi-static
case the discrete eigenvalues are contained within the complex envelope of the continuous spectrum.

For anisotropic media with dispersion, especially for magnetized plasma, the question of consider- able
interest is the stability of such a medium. Within the commonly adopted approach, based on the differential
form of the Maxwell’s equations and Lorentz or Vlasov’s equations of motion, very little can be said about the
stability of inhomogeneous objects of finite extent, whereas the VIE formulation is perfectly suited for this task.
Instead of analyzing the stability of the medium itself we propose to analyze the stability of the electromagnetic
field in a given medium. Due to self-consistency of the problem the two approaches are in fact identical. Thus,
we shall discuss the stability of the field in several practical cases ranging from optical crystals to plasma.
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Scattering of Electromagnetic Waves by Inhomogeneous
Dielectric Gratings Loaded with Perfectly Conducting Strips

T. Yamasaki, T. Ujiie, and T. Hinata
Nihon University, Japan

The scattering and guiding problems of inhomogeneous dielectric gratings have been of considerable interest
such as optical fiber gratings, photonic bandgap crystals, frequency selective devices, and other applications
by the development of manufacturing technology of optical devices. Recently, many analytical and numerical
methods which are applicable to the arbitrarily dielectric gratings have been proposed. However, most theoretical
and numerical studies have considered the periodic structures in which the material forming grating was either
metallic or dielectric.

In this paper, we proposed a new method for the scattering of electromagnetic waves by inhomogeneous
dielectric gratings loaded with perfectly conducting strips using the combination of improved Fourier series
expansion method and point matching method.

In the inhomogeneous dielectric region S2(0 < x < d), the permittivity profile ε2(x, z) is generally not
separable with respect to the x and z variables. Main process of our methods are as follows: (1) The inhomo-
geneous layer is approximated by an assembly of M stratified layers of modulated index profile with step size
d∆(, d/M . (2) Taking each layer as a modulated dielectric grating, the electromagnetic fields are expanded
appropriately by a finite Fourier series. (3)In the perfectly conducting strip and gap regions at C and C̄ for
the boundary, the electromagnetic fields are matched on both sides using point matching method(3) Finally,
all stratified layers include the metallic regions are matched using appropriate boundary conditions to get the
inhomogeneous dielectric gratings loaded with perfectly conducting strips.

Numerical results are given for the transmitted scattered characteristics for the case of incident angle both
TM and TE waves.

Figure 1: Structure of inhomogeneous dielectric gratings loaded with perfectly conducting strips.
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Effects of the Resonant Scattering of Intensive Fields by Weakly
Nonlinear Dielectric Layer

V. V. Yatsyk
Nat. Acad. of Sci. of Ukraine, Ukraine

Abstract—The transverse inhomogeneous, isotropic, nonmagnetic, linearly polarized, weakly nonlinear (a Kerr-
like dielectric nonlinearity) dielectric layer is considered. The results of a numerical analysis of the diffraction
problem of a plane wave on the weakly nonlinear object with positive and negative value of the susceptibility
are shown. The effects: non-uniform shift of resonant frequency of the diffraction characteristics of a weakly
nonlinear dielectric layer; itself the channeling of a field; increase of the angle of the transparency of the nonlinear
layer when growth of intensity of the field (at positive value of the susceptibility); de-channeling of a field (at
negative value of the susceptibility) are found out.

1. The Nonlinear Problem
Let the time dependence be exp (−iω t) and ~E (~r), ~H(r) complex amplitudes of an electromagnetic field.

We consider a nonmagnetic, isotropic, transverse inhomogeneous ε(L)(z) = 1 + 4πχ
(1)
xx (z), linearly polarized

~E = (Ex, 0, 0), ~H = (0,Hy,Hz) (E-polarized) and Kerr-like weakly nonlinearity P
(NL)
x =

3
4
χ(3)

xxxx |Ex|2 Ex,

max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣ε(L)(z)
∣∣ (where ~P (NL) =

(
P

(NL)
x , 0, 0

)
— vector of polarization, α = 3πχ

(3)
xxxx,

χ
(1)
xx and χ

(3)
xxxx is the components of susceptibility tensor) dielectric layer (Fig. 1), [1, 2].

Figure 1: Weakly nonlinear dielectric layer: max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣ε(L)(z)
∣∣.

The complete diffraction field Ex (y, z) = Einc
x (y, z)+Escat

x (y, z) of a plane wave Einc
x (y, z) = ainc exp

[
i(φy−

Γ · (z − 2πδ))
]
, z > 2πδ on the nonlinear dielectric layer (Fig. 1) satisfies such conditions of the problem:

∇2 · ~E +
ω2

c2
· ε(L)(z) · ~E +

4πω2

c2
· ~P (NL) ≡

(
∇2 + κ2 · ε

(
z, α · |Ex|2

))
· Ex (y, z) = 0, (1)

the generalized boundary conditions:

Etg and Htg are continuous at discontinuities ε
(
z, α · |Ex|2

)
;

Ex (y, z) = U (z) · exp (iφy), the condition of spatial quasihomogeneity along y;
(2)

the condition of the radiation for scattered field:

Escat
x (y, z) =

{
ascat

bscat

}
· ei (φy±Γ· (z∓2 πδ)), z

>
<

± 2 πδ (3)

Here: ε
(
z, α · |Ex|2

)
=

{
1, |z| > 2π∇2

ε(L) (z) + α · |Ex|2, |z| ≤ 2πδ
; ∇2 =

∂2

∂ y2
+

∂2

∂ z2
; α = 3πχ

(3)
xxxx; Γ =

(
κ2 − φ2

)1/2;

φ ≡ κ · sin (ϕ); |ϕ| < π/2 (see Fig. 1); κ = ω/c ≡ 2π/λ; c = (ε0 µ0)
−1/2, ε0, µ0 and λ length of the wave are the

parameters of environment.
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In this case the required solution of the problem (1)–(3) has the form:

Ex (y, z) = U (z) · eiφy =





ainc · ei(φy−Γ·(z−2πδ)) + ascat · ei(φy+Γ·(z−2πδ)),
Uscat (z) · eiφy,
bscat · ei(φy−Γ·(z+2πδ)),

z > 2πδ,
|z| ≤ 2πδ,
z < −2πδ.

(4)

Here U (−2πδ) = bscat, U (2πδ) = ainc + ascat.
The nonlinear problem (1)–(3) is reduced to finding the solutions U (z) ∈ L2

(
[−2πδ, 2πδ]

)
(see (4)) of the

inhomogeneous nonlinear integrated equation of the second kind [3, 4]:

U (z) +
i κ2

2Γ

2π δ∫

−2π δ

exp (iΓ · |z − z0|)
[
1−

(
ε(L) (z0) + α |U (z0)|2

)]
U (z0) dz0 = U inc (z) , |z| ≤ 2πδ, (5)

where U inc (z) = ainc exp [−iΓ · (z − 2 πδ)].
The integrated equation (5) with application of the quadrature method and use (4) is reduced to system of

the nonlinear equations of the second kind [4].

2. Susceptibility and Effects Resonant Scattering of the Intensive Fields

2.1. Intensity and Resonant Frequency
The effect of non-uniform shift of resonant frequency of the diffraction characteristics of nonlinear dielectric

layer is found out at increase of intensity of inciting field [4, 5] (see Fig. 2(a), at positive value of the susceptibility
α = 0.01, and also Fig. 2(b), at negative value of the susceptibility α = −0.01). Growth of intensity of
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Figure 2: Parameters of structure: δ = 0.5; ϕ = 450; κ = 0.375; ε(L) = 16. (a)|I| =
∣∣inca

∣∣ = 11.4; α = 0.01,
(b)|I| =

∣∣inca
∣∣ = 22.4; α = −0.01.

the inciting field |I| =
∣∣ainc

∣∣ results in change of the share of the reflected wave η (R (α)) = |R (α)|2
/
|I|2 (here

|R (α)| ≡ |ascat (α)|, |T (α)| ≡ |bscat (α)|, |I|2 = |T (α)|2 + |R (α)|2): reduction of value of resonant frequency
with increase and reduction of a steepness of the diffraction characteristics before and after resonant frequency
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(Fig. 2(a), at α > 0); increase of value of resonant frequency with reduction and increase of a steepness of the
diffraction characteristics before and after resonant frequency (Fig. 2(b), at α < 0).
2.2. Intensity and Angle

The effects: itself the channeling of a field — increase of the angle of the transparency of the nonlinear
layer (α 6= 0) when growth of intensity of the field (Fig. 3(a), at positive value of the susceptibility, α > 0);
de-channeling of a field (Fig. 3(b), at negative value of the susceptibility, α < 0) are found out, [4, 5].
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Figure 3: Parameters of structure: δ = 0.5; κ = 0.375; ε(L) = 16; for linear layer with α ≡ 0 and for nonlinear
layer: a with α = 0.01; b with α = −0.01.

The increase of the angle of a transparency with growth of intensity at positive value of the susceptibility
α = 0.01 is easy for tracking on Fig. 3(a):

∣∣ainc
∣∣ = 8, ϕ ≈ 46◦ and

∣∣ainc
∣∣ = 11.4, ϕ ≈ 85◦.

Weak nonlinearity of a dielectric layer ε
(
z, α · |Ex|2

)
≡ ε

(
z, α · |U |2

)
,

max
|z|≤2πδ

(
|α| · |Ex|2

)
<< max

|z|≤2πδ

∣∣∣ε(L)(z)
∣∣∣ , (6)

i. e., the small nonlinear additive α |U (z)|2 to a linear part ε(L)(z) of the dielectric permeability, caused by
intensity

∣∣U inc
∣∣ of a field of excitation of nonlinear object, results in essential changes diffraction characteristics.

Exceeding some critical threshold of intensity the statement (6) loses force, computing process is broken. For
example, diffraction characteristics reach critical values with growth of intensity of field, see lines for α > 0 on
Fig. 3(a): point of a transparency ϕ = ϕ∗(|ainc|), where η(R)|ϕ=ϕ∗(|ainc|) = 0 and η(T )|ϕ=ϕ∗(|ainc|) = 1, here
ϕ∗(|ainc|) defined from: dη(R)

dϕ |ϕ=ϕ∗(|ainc|) = dη(T )
dϕ |ϕ=ϕ∗(|ainc|) = 0, weakly nonlinear layer aspires to limiting

value ϕ∗(|ainc|) → 90◦ at |ainc| → max{|ainc|} = 11.5. The analysis of results for α < 0 on Fig. 3(b) shows, that
limiting critical values η(R)|ϕ=ϕ∗(|ainc|)≡0◦ → 0.5 and η(T )|ϕ=ϕ∗(|ainc|)≡0◦ → 0.5 at |ainc| → max{|ainc|} = 22.4
lay on curves of translucent η(R) = η(T ) = 0.5 weakly nonlinear structure. It allows to estimate numerically
size of required intensity of a field of excitation

max
|z|≤2πδ

(
|α| · |U (z)|2

)
≤ max
|z|≤2πδ

(
|α| · ∣∣U inc (z)

∣∣2
)

< C · max
|z|≤2πδ

∣∣∣ε(L)(z)
∣∣∣ (7)
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to make an estimation weakly sizes C, at which (6) does not lose force with growth of intensity of a field of
excitation of a nonlinear layer.

For example, see Fig. 3(a), (where: ε(L) (z) = 16, α = 0.01), convergence of iterative process is broken when∣∣U inc
∣∣ > 11.5. From (7) it is received: C = 0.083. Hence, weak nonlinearity proves at intensity not surpassing∣∣U inc
∣∣ = 11.5 and variations of small nonlinearity layer: max

|z|≤2πδ

(
|α| · |U (z)|2

)
< 1.328.

These effects (see sections 2.1 and 2.2) are connected to resonant properties of a nonlinear dielectric layer
and caused by increase at positive value of the susceptibility or reduction at negative value of the susceptibility
of a variation of dielectric permeability of a layer (its nonlinear components) when increase of intensity of a field
of excitation of researched nonlinear object.

3. Conclusion
The principal fields where the results of our numerical analysis are applicable are as follows: the investigation

of wave self-influence processes; the analysis of amplitude-phase dispersion of eigen oscillation-wave fields in
the nonlinear objects, see [6]; extending the description of evolutionary processes near to critical points of the
amplitude-phase dispersion of nonlinear structure; new tools for energy selecting, transmitting, and remembering
devices; etc.
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We consider three-dimensional problem of the electromagnetic wave diffraction by bounded and perfectly
conducting screen of arbitrary shape in free space. The problem is reduced to the electric field integral equation
(EFIE) [1]. We use very popular Rao-Wilton-Glisson (RWG) method for solving this problem. We have proved
theorem of convergence in special Sobolev spaces and obtaind estimation of the rate of convergence for RWG
method.

The main difficulties in RWG method are very large time of calculations of matrix elements with sufficiently
high accuracy and occurrence of large and dense matrices in systems of linear algebraic equations obtained after
discretization of the problem.

If one uses RWG method for the problem discretization, the matrix elements may be calculated indepen-
dently. A natural way to calculate the matrix elements is utilization of parallel computations using supercom-
puters or clusters. Note in addition that the structure of matrices is not arbitrary: in the diffraction problems.
We have the so-called structured matrices with O(n) different elements, where n denotes the matrix dimension.

We have created and elaborated efficient solvers for several types of diffraction problems on the basis of
subhierarchal algorithms of parallel computations [2].

*This study is carried out under the support of the Russian Foundation for Basic Research, grant no 03-07-90274.

REFERENCES

1. Ilyinsky, A. S. and Y. G. Smirnov, Electromagnetic Wave Diffraction by Conducting Screens, VSP Int.
Science Publishers, Utrecht, the Netherlands, 1998.

2. Medvedik, M. Y. and Y. G. Smirnov, “Subhierarchal parallel computational algorithm and convergence
of Galerkin Method in electromagnetic diffraction problem on plane screen,” Izvestiya Vyzov, Povolzsky
Region, Estestvennye Nauki, ü 5, 3–19, 2004 (in Russian).


