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New Stochastic AGLID EM Modeling and Inversion

J. Li, G. Xie, L. Xie, and F. Xie
GL Geophysical Laboratory, USA

Abstract—The AGILD modeling and inversion have been published in PIERS2005 in Hangzhou. The new 2.5D
AGILD and new GL electromagnetic (EM) modeling and inversion are publishing in PIERS2006 in Cambridge
of USA. We have proposed the stochastic SGILD modeling and inversion in nano-physics and geophysics using
magnetic field equations in 1999 and 2002. In this paper, we present a new stochastic AGILD (SAGILD) EM
modeling and inversion and software. We propose a new EM integral equation on the strip domain. Based on
the strip integral equation, we propose new stochastic EM field strip integral equations for mean, covariance,
and second order mean EM field and parameters. These stochastic EM moments strip integral equations are
employed on the boundary strip domain. In the cylindrical and spherical coordinate system, the strip domain
includes the boundary and pole strip involving pole ρ = 0 or r = 0, North Pole θ = 0 and South Pole θ = π.
In the remainder internal domain, we use stochastic moments Galerkin equations. We coupled these equations
to construct 3D and 2.5D SAGILD modeling algorithms. By decomposing the variance of the parameter mean,
δ < σ + iωε >= δ < σ + iωε >0 + δ < σ + iωε >2, δ < µ >= δ < µ >0 +δ < µ >2, we derive the new stochastic
EM parameters increment moment strip integral equation on the strip sub domain for isotropic or anisotropic
random materials. We used the equation pair of EM parameter stochastic integral equations on the strip sub
domain and EM parameter stochastic Galerkin equation in remainder sub domain to construct the SAGILD
inversion. The SAGILD modeling and inversion have widely applications in the Earth, Sun, and Luna space
EM field exploration, nanometer material and material sciences, geophysical and Earthquake exploration, MT,
MAIL, VEMP, weather radar imaging, medical MRI and X-ray imaging, and environmental engineering, EM
stirring in steel and metal continuous casting, seismic, and finances.

1. Introduction
We have proposed the stochastic SGILD EM modeling and inversion in geophysics and nano-physics using

magnetic field equations in 1999 [1] and 2002 [2]. A new GL method and its advantages for resolving historical
difficulties will be published in PIERS2006 in Cambridge of USA [3]. The AGILD modeling and inversion has
been published in PIERS2005 in Hangzhou [4], and the 2.5D AGILD modeling and inversion will be published in
PIERS2006 in Cambridge USA [5]. In this paper, we propose a new SAGILD EM modeling and inversion. First,
we propose a new EM integral equation on the boundary strip for rectangle coordinate or boundary pole strip
domain for cylindrical and spherical coordinate. Next, we propose new stochastic EM field integral equations
for mean, covariance field and parameters, and second order mean field and parameter. These stochastic EM
moment strip integral equations are employed on the strip domain. In the cylindrical and spherical coordinate
system, the strip domain includes the boundary and pole strip domain with poles ρ = 0 or r = 0, North Pole θ = 0
and South Pole θ = π. In the remainder internal domain, we use stochastic moments EM Galerkin equations.
We couple these equations to construct the 3D/2.5D SAGILD modeling. By decomposing the variance of the
mean of the parameters, δ < µ >= δ < µ > 0 + δ < µ >2, δ < σ + iωε >= δ < σ + iωε >0 +δ < σ + iωε >2. We
derive the stochastic EM parameters moment strip integral equations on the strip sub domain for isotropic or
anisotropic materials. These new parameter integral equations are described in our internal report in detail [6].
We use the EM parameter stochastic integral equations on the strip sub domain and EM parameter stochastic
Galerkin equation in remainder sub domain to construct the SAGILD inversion. In the cylindrical and spherical
coordinate, the strip domain contains the poles for resolving the coordinate singularity difficulty.

The SAGILD modeling and inversion have widely applications in the Earth, Sun, and Luna space EM field
exploration, nanometer material and material sciences, geophysical and Earthquake exploration, MT, MAIL,
VEMP, weather radar imaging, medical MRI and X-ray imaging, and environmental engineering, and EMS
stirring in metal casting, random flows, and finances. The new SAGILD modeling and inversion have advantages
over existing random method. The SAGILD methods have AGILD’s merits and improved field and parameter
moments and its confidences.

We arrange contents in this paper as follows. The introduction has been described in the section 1. In
section 2, we propose a new EM strip integral equation. The new stochastic EM moment strip integral equation
is presented in the section 3. The stochastic EM Garlekin equation is presented in the section 4. In section



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 933

5, we propose the stochastic EM modeling. The stochastic EM inversion is presented in the section 6. The
applications are described in the section 7. In section 8, we describe conclusions.

2. The New EM Strip Integral Equation
We have proposed EM integral equations in the paper [3], in which, our EM integral equations are

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJ

b (r′, r) HJ
b (r′, r)

EM
b (r′, r) HM

b (r′, r)

]
[D]

[
E(r′)
H(r′)

]
dr′, (1)

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ω

[
EJ(r′, r) HJ(r′, r)
EM(r′, r) HM(r′, r)

]
[D]

[
Eb(r′)
Hb(r′)

]
dr′. (2)

That is available for the rectangle, cylindrical, and spherical coordinate systems. In our paper [5], we proposed
the 2.5D EM differential integral equation in the cylindrical coordinate system. In this section, we propose the
new EM strip integral equations on the strip domain in rectangle or strip pole domain in the cylindrical and
spherical coordinate for resolving coordinate singularity.

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ωs

[
EJ

b (r′, r) HJ
b (r′, r)

EM
b (r′, r) HM

b (r′, r)

]
[D]

[
E(r′)
H(r′)

]
dr′−

∫

∂Ωs−

[
HJ

b (r′, r) EJ
b (r′, r)

HM
b (r′, r) EM

b (r′, r)

]
×

[
E(r′)
H(r′)

]
d~Sr′, (3)

[
E(r)
H(r)

]
=

[
Eb(r)
Hb(r)

]
+

∫

Ωs

[
EJ(r′, r) HJ (r′, r)
EM(r′, r) HM(r′, r)

]
[D]

[
Eb(r′)
Hb(r′)

]
dr′−

∫
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[
HJ(r′, r) EJ (r′, r)
HM(r′, r) EM(r′, r)

]
×

[
Eb(r′)
Hb(r′)

]
d~Sr′. (4)

The EM strip integral equations are dual equation each other. The equations (3) and (4) are available
for the rectangle, cylindrical, and spherical coordinate systems. In the rectangle coordinate r = (x, y, z),
E = (Ex, Ey, Ez), dr = dxdydz, in the cylindrical coordinate E = (Eρ, Eθ, Ez), dr = ρdρdθdz, in spherical
coordinate, dr = r2 sin θdrdθdφ, dS = r2dθdφr + r sin θdφdrθ + rdrdθφ, E = (Er, Eθ, Eφ). For the isotropic
materials, the material matrix [D] is the 6×6 diagonal matrix with variance of the conductivity and permittivity,
(σ − σb) + iω(ε − εb), and the magnetic permeability, µ − µb. For anisotropic materials, the matrix [D] is a
full matrix with variance of the anisotropic materials. Obviously, the EM strip integral equations have no any
coordinate singularity.

3. The Stochastic EM Field Moment Strip Integral Equations
Upon substituting the decomposition of the EM field,

[
E(r)
H(r)

]
=

[
E(r)
H(r)

]

0

+
[

E(r)
H(r)

]

1

+
[

E(r)
H(r)

]

2

, (5)

and the decomposition of the material matrix

[D] =< [D] >+[D]s, (6)

into the equation (3), we propose the stochastic EM moment strip integral equations,
[
E(r)
H(r)

]

0

=
[
Eb(rs)
Hb(r)

]
+

∫

Ω

[
EJ

b (r′, r) HJ
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EM
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b (r′, r)
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]

0
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HM
b (r′, r) EM

b (r′, r)

]
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H(r′)

]

0

d~S, (7)

and the following three stochastic EM field moment strip integral equations. Let AGILDMI to be the stochastic
EM field moment integral operator

AGILDMI
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(8)
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AGILDMI
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4. The Stochastic EM Field Garlekin Equation
We propose the EM Garlekin equation in the rectangle, cylindrical, and spherical coordinate.
∮

∂Ω

[E H]0 × φId~S −
∫

Ω

[E H]0∇× φIdΩ =
∫

Ω

[E H]0

[
0 〈σ〉
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]
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0 1
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]
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AGILDMG
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AGILDMG

([
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]
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]
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= 0, (14)

AGILDMG

([
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∮
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〈[E H]2〉×φId~S−
∫
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〈[E H]2〉∇×φIdΩ=
∫
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0 1
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]
φIdΩ, (16)

The above stochastic EM moment strip integral equations are available for isotropic materials. For anisotropic
materials, the stochastic EM moment strip integral equations can be derived similarly. The [CσE ] is covariance
moment matrix, CσE =< E(r)σ(<) >,<, > is assemble mean, other covariance terms are defined similarly.
ĈIJ = 〈I(r)J(<)〉|r=<I = σ, J = E, H, [CIJ ] = [< I(r), J(<) >], I, J = σ, µ.

5. The New Stochastic SAGILD EM Modeling

5.1 The AGILD Pair of the Strip Integral Equation and the Garlekin Equation
In our AGILD modeling [4], we couple the strip integral equation or differential integral equation in the

strip domain and the Garlekin equation in the remainder internal domain for solving EM field. We call the
strip integral equation and Garlekin equation to be AGILDM pair. In the section 4, the stochastic EM moment
strip integral equations (7–11) and EM moment Garlekin equation (12–16) are used to form AGILD pair
AGILDM{7,12}; AGILDM{9,14}, AGILDM{10,15}, AGILDM{11,16}.
5.2 The New SAGILD EM Modeling

We propose the SAGILD EM modeling as following five steps,
(M.1) use AGILD modeling to solve the pair equations AGILDM{7,12} for < [E(r), H(r)] >0;
(M.2) use AGILD to solve the pair equations AGILDM{9,14} for [CIJ (r))], I = σ, µ, J = E,H;
(M.3) use AGILD to solve the pair equations AGILDM{10,15} for [CIJ (r))], I = E, H, J = E, H;
(M.4) use AGILD to solve the pair equations AGILDM{11,16} for < [E(r),H(r)] >2;
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(M.5) to update < [E(r),H(r)] >=< [E(r), H(r)] >0 + < [E(r),H(r)] >2.

6. The New Stochastic SAGILD EM Inversion

6.1 The EM Parameter Variation Moment Strip Integral Equations

δ
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H

]

0
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6.2 The EM Parameter Variation Moment Garlekin Equations
∮

∂Ω

δ[E H]0 × φId~S −
∫

Ω

δ[E H]0∇× φIdΩ =
∫
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δ
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]
, δ
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d
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AGILDGII
(
δ
〈
[D]2

〉
,
〈
δ[E, H]2

〉
d
, δĈDE , δ[D0]

)
= 0. (25)

6.3 The SAGILD EM Parameter Inversion
We propose the SAGILD EM inversion as the following six steps,

(I.1) use AGILD inversion to solve the pair equations AGILDI{17,22} for < δ[D]0 >;
(I.2) use AGILD inversion to solve the pair equations AGILDI{19,23} for < δ[CDE(r)] >;
(I.3) use AGILD inversion to solve the pair equations AGILDI{20,24} for < δ[CDD(r)] >;
(I.4) use AGILD inversion to solve the pair equations AGILDI{21,25} for < δ[D]2 >;
(I.5) to update < δ[D] >=< δ[D]0 > + < δ[D]2 >;
(I.6) to do iteration (I.1)–(I.5) with regularizing to find [D] such that P ([D])/P (E, H)(rd)) = max.

7. Applications
Because there are random noises in the field data and parameters in the experiment and industrial measure-

ments, it is necessary to study stochastic EM field modeling and parameter inversion. Our SAGILD modeling
and inversion have AGILD’s significant merits and improved field and parameter moments and its confidences
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interval. Our SAGILD methods have widely applications in the Earth, Sun, and Luna space EM field explo-
ration, nanometer and material sciences, geophysical and Earthquake exploration, MT, MAIL, VEMP, weather
imaging, medical MRI and X-ray imaging, and environmental engineering, EM stirring in casting. SAGILD is
used for finances, movie field, game field, seismic wave, acoustic wave, random flow filed, QEM particle wave in
nano-physics and nano-biophysics and photosynthesis in anisotropic media.

8. Conclusions
The all integral equations and SAGILD methods in this paper are new original works. Field and synthetic

random data tests show that the SAGILD method is high resolution, stable, and reasonable accurate moment
modeling and inversion algorithms. It can be used to obtain the improved EM field and parameter mean with
the second mean term, covariance, and standard deviations. SAGILD is very useful for estimating uncertainty
and confidence interval for field and parameters. Our SAGILD software are effective tools for EM field and
parameters, finances, movie field, game field, seismic, acoustic, random flow, QEM particle wave in nano-physics
and biophysics and photosynthesis. Our SAGILG MCMC stochastic method and software are developing.
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The inverse scattering problem of reconstructing strong scatterers, especially metallic ones, from scattered
field measured data, is one of the most important issues in microwave imaging applications.

This contribution deals with such a problem in the framework of a two-dimensional and scalar geometry
and with the possible scatterers embedded in a homogenous and lossless medium. In particular, we consider
both the cases of “large” objects (i.e., scatterers whose cross-section is much larger than the wavelength) and
of “thin” objects (i.e., scatterers with their cross-section much smaller than the wavelength).

For large scatterers, the Kirchhoff or Physical Optics (PO) approximation is exploited, whereas unknown
scatterers shape, is represented as the support of a single-layer distribution. This allows the problem be formu-
lated as the inversion of a linear operator we tackle by means of its Truncated Singular Value Decomposition
(TSVD) [1]. As well known, the PO approximation requires that the objects are non-convex, exhibit a “smooth”
surface and are not interacting. Hence, it is worthy of investigating to what extent the model error, arising by
objects not meeting the above requirements, affects the linear inversion scheme. In this paper we perform this
investigation for three test cases. First, with the aim of pointing out the role of the radius of curvature, we
consider a circular cylinder with radius smaller than the working wavelength. Second, two interacting circular
cylinders are considered. Finally, a non-convex scatterer is addressed [2].

For ‘thin’ scatterers, we set a linear scattering model neglecting the mutual interactions between them
and consider only the leading term of the low-frequency approximation of the scattered field. Furthermore,
a distributional representation of the unknown is again fruitfully introduced. However since, in this case, the
unknowns are the positions of the scatterers, we represent them as the support of a linear combination of Dirac
pulses. Accordingly, the inversion can be still performed by a TSVD scheme. We assess the performance of this
inversion scheme against the model error due to neglecting the mutual interactions [3].

As a final point, for both above cases, a thresholding procedure aiming at mitigating spurious artefacts
appearing in the reconstruction owing to regularization and noise, is proposed [4].
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Acceleration of the 3D FDTD Algorithm in Fixed-point
Arithmetic Using Reconfigurable Hardware

W. Chen, M. Leeser, and C. Rappaport
Northeastern University, USA

Modelling electromagnetic behavior has become a requirement in key electrical engineering tech- nologies
such as cellular phones, mobile computing, lasers and photonic circuits. The Finite-Difference Time-Domain
(FDTD) method, which provides a direct, time domain solution to Maxwell’s Equations in differential form with
relatively good accuracy and flexibility, has become a powerful method for solving a wide variety of different
electromagnetics problems. The FDTD method was not widely used until the past decade when computing
resources improved. Even today, the computational cost is still too high for real-time application of the FDTD
method.

Much effort has been spent on software acceleration research and people have used supercomputers or
parallel computer arrays to calculate the FDTD algorithm in software. However, real-time application of the
FDTD algorithm needs much faster speed as well as smaller size. Although Application Specific Integrated
Circuits (ASICs) provide the speed, designers hesitate to apply the FDTD algorithm to ASICs due to the high
cost. Recently, as high capacity Field-Programmable Gate Arrays (FPGAs) have emerged, researchers have
become interested in reconfigurable hardware implementations of the FDTD algorithm for faster calculation
and real-time applications.

We present the first fixed-point 3D FDTD FPGA accelerator, which supports a wide range of materials
including dispersive media. By analyzing the performance of fixed-point arithmetic in both soil-based media
and human tissue media, we choose the right fixed-point representation to minimize the relative error between
fixed-point and floating point results to less than 0.5%. The FPGA accelerator supports the UPML absorbing
boundary conditions which have better performance in dispersive soil and human tissue media than PML
boundary conditions. Finally, the FPGA design implements and supports three FDTD applications including
the Ground Penetrating Radar buried object detection model, the microwave breast cancer detection model
and the spiral antenna model. Based on these three applications, our FPGA design can support a wide range
of FDTD applications.

Implementation of the FDTD in hardware greatly increases its computational speed. The speedup is due to
three major factors: custom memory interface design, pipelining and parallelism. The FDTD method is a data
intensive algorithm; the bottleneck of the hardware design is its memory interface. With the limited bandwidth
between FPGA and data memories, a carefully designed custom memory interface will fully utilize the memory
bandwidth and greatly improve the design performance. Also, by considering the tradeoff between speedup and
chip areas, we implement as much pipeline and parallelism as possible to speed up the design.

The 3D FDTD design is implemented on an AnnapolisWildStarTM -II Pro/PCI FPGA board which repre-
sents the leading technology in FPGA COTS (commercial off-the-shelf) hardware. The performance results of
the software and hardware implementations are shown in Fig. 1. The hardware design running at 90 MHz on
the FPGA chip is 25 times faster than fixed-point software running on a 3.0GHz PC.

Figure 1: Performance results—softwares vs. FPGA hardware.

There are two Xilinx Virtex-II Pro FPGAs on our FPGA board. In the near future, our research will focus
on a dual-FPGA parallel implementation of the FDTD algorithm which is expected to double the speedup.
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Geometric Optics and Electromagnetic Models for Cylindrical
Obstacles

D. Trappeniers, R. G. Gonzàlez, E. van Lil, and A. van de Capelle
K. U. Leuven, Belgium

Abstract—A software prediction tool called EPICS (Enhanced Propagation for Indoor Communications Sys-
tems) was developed at the ESAT-TELEMIC division of the K. U. Leuven in two versions: a Geometric Optics
(GO) version and a Physical Optics (PO) version. However, like many other three-dimensional package, this
can only determine the signal in an environment that can be decomposed into (ir)regular hexahedral obstacles
(with 6 sides like rectangular blocks, cubes, etc.) or (complex) combinations of them. Although most of the
real life environment can be approximated by these hexahedral obstacles, this might lead to some artefacts
like periodic radar cross section variations, the need for multiple diffractions to calculate the signal behind a
cylindrical obstacle, or reflections that are ignored (e. g., because the approximated side plane is positioned so
that a reflection on that plane can not reach the receiver) is existing. To calculate the signal more accurately
for those cases, we need to implement curved obstacles into EPICS. In a first step to achieve this goal, the
introduction of cylindrical obstacles is investigated.

In this paper, the general strategy is discussed. The first step is to determine the different intermediate
(i. e., penetration, reflection and diffraction) points on the ray between transmitter and receiver. Efficient
computational routines have been written and tested for this purpose, mostly solving the problem first in two
dimensions (projected in a plane perpendicular to the axis of the cylinder) and then transforming this solution
to the three-dimensional problem. Once these intermediate points have been found, one can start with the
computation of the electromagnetic field.

In the case of a penetration, the intermediate point(s) can be found very easily (crossing point(s) of a line and
a circle) and the electromagnetic computations don’t differ from the computations with hexahedral obstacles.
For the reflection by a non perfectly conducting surface, the plane wave Fresnel reflection coefficients can be
used. Also the finite thickness of the cylindrical walls can be taken into account, using internal (multiple)
reflections, if the losses are high or the reflection coefficient of the wall is not to large.

For the diffractions, the two-dimensional geometric problem that needs to be solved to find the diffraction
points is the determination of the tangent line to a circle (both from transmitter and receiver). Note that both
can have two tangent lines, and one might have to match the two corresponding diffraction points. In this case,
the electromagnetic computations for the vertical (i. e., field component parallel with the axis of the cylinder)
and horizontal polarisation are done separately. An important issue in these computations is the convergence
of the series used for the calculation of the field.

The reflection points on a cylindrical wall can not be found as easily as in the previous two cases. In general,
an iterative process is required. This implies that the search for a good starting value is an important issue.
Therefore some efficient computer programs were written to find firstly a good starting value of the Newton-
Raphson iteration. As for the electromagnetic computations, one has to take into account that the caustics are
transformed after the reflections and thus another amplitude factor has to be taken into account.

Although the described routines are not (yet) a part of the EPICS software, new routines based on Geometric
Optics (GO) have been written and tested (in matlab) to predict penetration, reflection and diffraction of
electromagnetic fields around cylindrical obstacles. This will be used to compute the effects of a curved airport
terminal on an Instrument Landing System (ILS).

1. Introduction
Most of the real life environment can be approximated by hexahedral obstacles, or combinations of different

hexahedral obstacles. Of course this leads to some artefacts like periodic radar cross section variations, the need
for multiple diffractions to calculate the signal behind a cylindrical obstacle, or reflections that are ignored,
because the approximated side plane is positioned so that a reflection on that plane can not reach the receiver
(see Figure 1). To calculate the signal more accurately for those cases, we need to implement cylindrical obstacles
into the EPICS program [1].

For each phenomenon, i. e., penetration, diffraction and reflection we briefly discuss the routines to find the
intermediate (penetration, diffraction and/or reflection) points [2]. In most cases, this implies that we first solve
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Figure 1: Examples of combinations of hexahedral obstacles to more complex obstacles house (left) and conical
tower (right).

a two-dimensional problem which can be easily transformed to the three-dimensional solution. The main part
of this paper, however, will be devoted to the electromagnetic computations of the field around these cylindrical
obstacles.
1. Penetrations and Attenuation

In EPICS the “direct” field between 2 (intermediate) points is calculated in free space. However, this
path might be obstructed by an obstacle. Therefore, each wall/obstacle obstructing this path introduces some
attenuation of the signal strength. In general we have 3 possibilities: no penetration (e. g., the line transmitter-
receiver is parallel to the axis of the cylinder but the distance between the two lines is bigger than the radius),
one penetration (if either the transmitter or the receiver is inside the cylinder, while the other is outside, or in
the tangent case) or two penetrations (general case).
1.1. How to Find the Penetration Points?

The routine to find the penetration points is rather easy: first we determine the crossing points of the
line transmitter-receiver (or between 2 intermediate points) with the top and bottom plane of the cylinder. If
these points are between the transmitter and receiver, and if the distance of these points to the centre of the
top/bottom plane respectively is smaller than the radius of the cylinder, these are valid penetration points. The
last step is to investigate the cylindrical wall. Therefore, we need to calculate the crossing points of the line
between the projected locations of the transmitter and receiver and a circle. Figure 2 shows the side and top
view of some examples (the transmitter is denoted by a ¦, the receiver by a ◦ and the penetration point(s) by
an ∗).

Figure 2: Examples of penetration: both through the side walls (left) and one penetration through a side wall
combined with a penetration through the reference/bottom plane (right).

1.2. The GO Penetrated Field
Classical Geometrical Optics (GO) states that the high-frequency electromagnetic field propagates along
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ray paths, which satisfy the principle of Fermat, which states that the propagation of waves associated with
these high frequency fields can be reduced to the study of wave paths along which the travel time is minimal.
For perpendicular polarisation, the incident field lies in the plane perpendicular to the plane of incidence (soft
boundary conditions). Hard boundary conditions require the incident field to be parallel with the plane of
incidence. For the reflection by a non-perfectly electromagnetic conducting surface the plane-wave Fresnel
reflection coefficients can be used:

Γ⊥ =
ε′ cos θ −

√
ε− sin2 θ

ε′ cos θ +
√

ε− sin2 θ

Γ‖ =
cos θ −

√
ε′ − sin2 θ

cos θ +
√

ε′ − sin2 θ
(1)

where θ is the angle between the incidence ray and the normal of the penetrated plane, ε the permittivity and σ
the conductivity of the wall. Also the finite thickness of the wall under investigation can be taken into account
if the dimensions are small with respect to the distance between transmitter and receiver. In those cases, a
plane wave model based on successive reflections within the slab leads to much better results (Figure 3). Only
when the losses are small and is not close to 1, edge effects have to be taken into account. However, for practical
cases of concrete and thick walls the losses are sufficiently high.

Figure 3: Multiple reflections within a slab.

If we suppose that walls can be approximated by a single slab of dielectric material we can easily see from
(Figure 3) that the penetrated field is given by (2), where Γ is the appropriate reflection coefficient. Using this
equation, the generalised transmission coefficient can be derived (3).

~Et = ~Ei
∞∑

n=1

(1 + Γ) (−Γ)2n−2 (1− Γ) e−2(n−1)sαe−2j(n−1)sβej(n−1)k0d sin θ (2)

τg =

(
1− Γ2

)
e−sαe−jsβ

(1− Γ2) e−2sαe−j2sβejk0d sin θ
(3)

where k0 denotes the free space phase constant, while α and β are the plane wave attenuation and phase constant
of a lossy medium [3], given by (4). As for the case of the generalised reflection coefficient, the penetration
coefficient for given material parameters may depend to a great extent on the frequency and thickness used.
Inversely, when thickness and frequency are known penetration measurements can be used to estimate the
material parameters of different structures [4].

α = ω

√
µε

2

√√
1 +

( σ

ωε

)2

− 1

β = ω

√
µε

2

√√
1 +

( σ

ωε

)2

+ 1 (4)

Figure 4 shows 2 examples of respectively a “perpendicular” incidence, where the line transmitter-receiver
is perpendicular to the axis of the cylinder and a “non-perpendicular” incidence. In this last case an extra
parameter m can be specified (note that the line transmitter-receiver is still crossing the axis of the cylinder).
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Figure 4: Examples of penetration through a cylinder: perpendicular (left) and non-perpendicular (right) case.

For these examples we used a wall with a thickness l of 0.1m, a relative permittivity 2.5 (εr) and a conductivity
of 0.036 (σ). The used frequency was 2.45 GHz.

Note that when m gets very high the losses through the faces are also bigger. For smaller incidence angles,
resonance can occur in the wall, so that the losses are not directly proportional with s (see also Figure 3).

2. Diffractions
Again we can then solve the geometrical problem (see Figure 5). The determination of the diffraction

points in a two-dimensional environment is rather easy: we draw the lines tangent to the circle from both
the transmitter and the receiver (see top views). The last step is to determine which of the two points of the
transmitter side corresponds with which point at the receiver side (smooth transmission between the air medium
and the cylinder surface). Note that we only take diffractions around the cylinder into account. Thus, if one
or both of the two diffraction points of one ray turns out to be above the “top” plane or below the “bottom”
plane (reference plane), this ray is not taken into account (e. g., Figure 5).

Figure 5: Examples of diffraction: both diffractions are valid (left) and the righter diffraction is ignored (right).

2.1. Vertical Polarisation
We have considered a plane wave incident upon a perfectly conducting cylinder (Figure 6). The incident

wave is linearly polarised with electric vector ~Ei parallel to the axis of the cylinder. The incident ~k-vector is
perpendicular to the axis of the cylinder. In terms of cylindrical coordinates, we have

~Ei = ~izE0e
jkx = ~izE0e

−jkρ cos θ0 (5)
In this analysis we follow the procedure described by Kong [5].

To match the boundary conditions at ρ = a, we transform the plane wave solution into a superposition of
cylindrical waves satisfying the Helmholtz wave equation in cylindrical coordinates:
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Figure 6: Scattering by a conducting cylinder.

e−jkρcosθ0 =
∞∑

m=−∞
amJm(kρ)ejmφ (6)

The constant am can be determined by using orthogonality relations for ejmφ. We multiply both sides by e−jnφ

and integrate over φ from 0 to 2π. In view of the integral representation for the Bessel function,

Jn(kρ) =
1
2π

∫ 2π

0

e−jkρcosθ0−jnφ+jnπ/2dφ (7)

we obtain am = e−jnπ/2 and
e−jkρcosθ0 =

∞∑
m=−∞

Jm(kρ)ejmφ−jmπ/2 (8)

This expression is referred to as the wave transformation, which represents a plane wave in terms of cylindrical
waves.

The scattered wave can also be expressed as a superposition of the cylindrical functions satisfying the
Helmholtz wave equation. Expecting outgoing waves, we write the solution in terms of Hankel functions of the
first kind. The sum of the incident wave and the scattered wave satisfies the boundary condition of a vanishing
tangential electric field at ρ = a. We find the total solution to be

~E = ~izE0

∞∑
n=−∞

[
Jn(kρ)− Jn(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejnφ−jnπ/2 (9)

The first summation term represents the incident wave; the second summation term, the scattered wave. Note
that for ρ = a, the field from (9) becomes zero. In the far-field zone, where kρ >> 1, we can make use of the
asymptotic formula for H

(1)
n (kρ) and find that the scattered wave takes the form of the first expression of (10)

for small radii a, which can be expanded with respect to ka.

~Es ≈ ~izE0

∞∑
n=−∞

√
2

πkρ

Jn(ka)

H
(1)
n (ka)

ejkρ+jn(φ−π)−jπ/4

~Es = ~izjE0

√
2

πkρ

[
1

ln(ka)
+ (ka)2 cosφ− (ka)4

8
cos 2φ + ...

]
ejkρ−jπ/4 (10)

This series converges rapidly when the radius of the cylinder is small compared with the wavelength, ka << 1.
The first term is angle-independent and signifies that the scattered wave caused by an infinitely thin wire is
isotropic.
2.2. Horizontal Polarisation

We have also generalised the procedure and implemented the diffraction by a conducting cylinder for hori-
zontal polarisation. In this case, the electrical field can be expressed like this (see Figure 6):

~Ei = ~iyE0e
−jkρ cos φ (11)

The scattered wave takes the following form:

~Es = ~iρ

∞∑
n=−∞

anH(1)
n (kρ)ejn(n−π/2) + ~iφ

∞∑
n=−∞

bnH(1)
n (kρ)ejn(n−π/2) (12)



944 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

Once again, we have to require that the φ-component of the total field (incident and scattered field) vanishes
for ρ = a.

The φ-component of the incident field (11) can be written as:
~iφ = −~ix sin φ + ~iy cosφ

~Ei
φ = − ~E0e

−jkρ cos φ cosφ (13)

By differentiating Eq. (8) with respect to ρ we obtain:

− jkejkρ cos φ = k

∞∑
n=−∞

J ′n(kρ)e−jn(n−π/2) (14)

where the derivative of the Bessel function can be found from [6]:

J ′n(z) =
Jn−1(z)− Jn+1(z)

2
(15)

J ′0(z) = −J1(z) (16)
When considering only the φ-component of the scattered field (12), we find (17). Indeed, the φ-component

vanishes in the far field. This expression can be simplified as we have done above for the vertical polarisation.

~E = ~iφE0

∞∑
n=−∞

[
J ′n(kρ)− J ′n(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejn(φ−π/2) (17)

In Figure 7 both the vertical and horizontal component are shown for 2 examples. Note that the horizontal
component gets stronger as the radius of the cylinder increases.

Figure 7: Examples of diffracted fields around a cylinder.

3. Reflections

3.1. Iterative Process Required to Find the Reflection Points
Whereas for the previous phenomena, the determination of the intermediate points was rather easy, this

requires some more attention in the case of a reflection. Of course, one can determine some easy cases as well,
e. g., reflections on top/bottom plane, symmetrical cases, etc. The general case for the determination of the
reflection point(s), is somewhat more complicated. To find the solutions of the two-dimensional problem we
have to solve a fourth degree equation iteratively [2]. This equation is derived by drawing a tangent line on
the circle through a chosen reflection point on the circle to determine the mirror images of the transmitter (see
Figure 8).

From those points, one can compute the points on the line transmitter-receiver (λ2 and λ2) where the
signal will be reflected to (i. e., the crossing points between this line and the lines from the mirror image of the
transmitter and the reflection points under investigation, determined by λ1). The goal is to determine λ1 so
that the vector determined by λ2, λ2b respectively, is equal to the projection of the receiver. This implies that
λ2 and λ2b should be equal to 1, leading to Eq. (18).
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Figure 8: Sketch of general case.

Figure 9: Examples of reflection on a cylinder: without (left) and with (right) reflections on the top and bottom
plane.

λ2,2b = λ1

[
±2Rc

√
a′ + b′λ1 + c′λ2

1 − 2a′ − b′λ1

±Rc

√
a′ + b′λ1 + c′λ2

1 − a′ + c′λ2
1

]

λ2,2b = 1? ⇔ A4λ
4
1 + A3λ

3
1 + A2λ

2
1 + A1λ1 + A0 = 0 (18)

where a′ is the quadratic norm of the projected transmitter (λ1 = 0), b′ twice the scalar product between this
vector and the vector between projected transmitter and receiver, c′ the quadratic norm of this last vector and
Rc the radius of the cylinder.

Unfortunately, we don’t always have the possibility to solve a linear equation of the fourth order. Therefore,
we will solve this problem iteratively by using the Newton-Raphson method. One can see that equation (18)
has 4 possible singularities (nominator equal to zero), and that they are difficult to calculate (start value of
Newton-Raphson has to be on the right side of these singularities). Therefore we will search a solution for the
inverse function (1/λ2 = 1). The last step will be again the transformation of the two-dimensional solution to
the three-dimensional solution (excluding reflection points on the cylindrical wall that lie above the top plane
or below the bottom plane).
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3.2. Reflected Field Computations
For the implementation of the computation of the reflected field, one has to keep in mind that after the

reflection, the location of the caustics, both for parallel and perpendicular to the axis of the cylinder, might
have been changed as is shown in Figure 10.

Figure 10: Reflection against a curved surface (parallel case).

Taking a cross-section along one of the radii of curvature, and expressing the arc on the circle as a function
of the viewing angles, one can obtain:

a∆α cos θ0 = l∆γ1 = ρ∆γ2 (19)
where ∆γ1 = ∆θ0 −∆α and ∆γ2 = ∆θ0 + ∆α. Eliminating ∆α/∆θ0 this leads to

1
ρi

=
1
l

+
2

Ri cos θ0

1
R1

=
cos2 α

a
(20)

1
R2

=
sin2 α

a

where Ri represents the radius of curvature (parallel and perpendicular to the axis). Indeed, it can be shown
in analysis that the radius of curvature of a function y(x) is given by:

Ri =
y′′√

(1 + y′2)3
(21)

In general the cut of a cylinder is an ellipse which can be expressed by (x/a′)2 + (y/b′)2 = 1, where a′ = a
and b′ = a/ cosα, bearing in mind that α is the angle between the axis of the cylinder and the cut. Using (21)
at the expression of the ellipse, one obtain the formulas of (20). Note that for the parallel case R2 will become
infinite. This implies that the distance to the new caustics can be computed:

Figure 11: A bunch of rays with a different radius of curvature.

1
ρ1

=
1
l

+
2 cos2 α

a cos θ0

1
ρ2

=
1
l

+
2 sin2 α

a
(22)
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Keeping in mind that the total distance after reflection is given by di = ρi + s, this implies that the field
attenuation after reflection can be computed using:

|E| = |E0|
√

ρ1ρ2

(ρ1 + s)(ρ2 + s)
(23)

where |E0| is the field at reflection point ~M . This attenuation has to be multiplied by the reflection coefficients
which can be determined from the slab-approximation of the wall (see Figure 3).

~Er = ~Ei

[
Γ +

∞∑
n=1

(1 + Γ) (−Γ)2n−1 (1− Γ) e−2nsαe−2jnsβejnk0d sin θ

]
(24)

Γg = Γ

[
1−

(
1− Γ2

)
e−2sαe−j2sβejk0d sin θ

(1− Γ2) e−2sαe−j2sβejk0d sin θ

]
(25)

3.3. Case Study: Brussels Airport Terminal
At Brussels airport, a few years ago a new terminal was build. This A-terminal has a curved shape, to

reduce the influence on the Instrument Landing System (ILS) of the neighbouring runway. This ILS systems
allows blind landings, and thus has to be very reliable. Using a curved shape, the effect of this new terminal
was reduced radically. Figure 12 shows the effect of a rectangular building (left) and a curved building (right)
on the differnce pattern of the ILS system (zero along the runway). Note that the buiding was approximated
by a cylinder with a horizontal axis, which comes close to the current shape of this A-terminal. One can clearly
see that in the zone where reflections can occur (between 3720 and 5200m along the x-axis), the effect of the
cylindrically shaped building is much smaller.

Figure 12: Comparsion between rectangular shaped (left) and curved shaped (right) A-terminal for the
difference-pattern of the ILS system.

4. Conclusion
In this paper we investigated the influence of a cylindrical obstacle on the electromagnetic signal. Though it

is not presented as a part of the EPICS software yet, new routines based on Geometric Optics (GO) have been
written and tested to predict penetration, reflection and diffraction of electromagnetic fields around cylindrical
obstacles as a step in a future implementation in EPICS.
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3D and 2.5D AGLID EMS Stirring Modeling in the Cylindrical
Coordinate System

G. Q. Xie, J. H. Li, J. Li, and F. Xie
GL Geophysical Laboratory, USA

Abstract—We have proposed the new GL and AGILD modeling and inversion in the PIERS 2005 in Hangzhou.
In this paper, we propose 2.5D AGILD modeling algorithm for electromagnetic (EM) stirring, motor and
generator design. In the cylindrical coordinate system, the EM field is vector function of r, θ, and z. The
electrical conductivity is only depended on radial coordinate r and vertical coordinate z. Upon substituting
the Fourier serious of the magnetic field into the strip differential integral equation on boundary strip with pole
ρ = 0 and Galerkin equation in the internal sub domain, we construct 2.5D AGILD EM stirring modeling in
cylindrical coordinate system for the steel and metal continuous casting. There are serious difficulties in the EM
stirring modeling by using FEM method and FD method. First, there is u/ρ2 term in the Maxwell magnetic
field differential equation in the cylindrical coordinate system, the pole ρ = 0 is strong coordinate singularity.
The coordinate singularity is difficult in the EM stirring modeling by using FEM and FD method. Our 2.5
AGILDEMS modeling method resolved this difficulty. There is no any coordinate singularity in our 2.5D EM
differential integral equation. Second, because the conductivity in air is zero but it is 105 in steel, what is a
suitable boundary condition on ρ = 0 for current, electric field, and magnetic field that is another difficulty
when FEM method and FD method to be used. Our AGILDEMS overcome this difficulty. Based on our 2.5D
AGILDEMS algorithm, we developed the 2.5D AGILDEMS modeling software. Many applications show that
the 2.5D AGILDEMS software is a powerful tool for design of the EM stirring and real time control monitor
in the continuous casting. The AGILD K-ε flow modeling and software are developing and joining with our
AGILD EMS modeling for continuous casting. GL EMS and AGILD EMS modeling can be used for micro,
nano motor, generator and geophysics and materials.

1. Introduction
In the steel and metal continuous caster, the electromagnetic (EM) stirring (EMS) is an established technique

and important approach for improving steel quality. Many EMS with variable style have been working in the
steel and metal continuous caster industrial in the world. To exactly calculate the EM field and determine the
bloom/billet’s size and properties in EMS are an important and difficult task. Because the conductivity in the
air environmental is zero but 50,000 1/ohm in steel. The sharp high contrast is difficult in inversion. The EM
field artificial boundary condition for infinite domain is inaccurate and complicated. The coordinate singularity
is another difficulty in FEM for EMS modeling in the cylindrical coordinate system. The existing EM FEM
method and software are not accurate to calculate EM field in EMS. The EMS properties inversion for steel
material and conductivity is necessary to develop. We have proposed the new GL and AGILD modeling and
inversion in the PIERS 2005 in Hangzhou [1, 2]. We propose the GL method and its advantages for resolving
the historical difficulties [3] and the stochastic AGILD EM modeling and inversion in Piers 2006 in Cambridge
[4]. In this paper, we propose the 2.5D AGILD EMS stirring modeling using our magnetic field differential
integral equation and magnetic field Garlekin equation. Our AGILD EMS modeling is an important tool for
EMS design and EMS real time processes monitoring in the continuous caster. Also EMS modeling and inversion
are useful for variable motor and generator design, environment, geophysics, coaxial antenna, etc. sciences and
engineering.

The description order in this paper is as follows. In the section 2, we derive the 3D and 2.5D magnetic field
strip differential integral equations in the cylindrical coordinate system. The 3D and 2.5D magnetic field strip
Garlekin equations are derived in the section 3. In the section 4, we present the 3D and 2.5D EMS modeling.
The applications of the EMS modeling is described in the section 5. In the section 6, we describe conclusions.

2. The 3D and 2.5D Magnetic Field Strip Differential Integral Equations
We derive the 3D and 2.5D magnetic field differential integral equations in the strip domain in the cylindrical

coordinate system in this section. We call the equations to be the strip magnetic field differential integral
equations.
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2.1. The 3D Magnetic Field Strip Differential Integral Equation
Upon substituting the field and coordinate transformation between the rectangle and cylindrical coordinate

system, we derive the 3D magnetic field strip differential integral equation in the cylindrical coordinate system
as follows
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where E is the electric field, H is the magnetic field, Em
b and Hm

b is Green function exciting by the magnetic
dipole source, Em

b (r′, r) has weak and integrative singular at r = r′, the r locates in the outside boundary of the
strip or in the subsurface with ρ′ = 0, the r′ locates in ∂Ω−, the internal boundary of the strip, therefore, the
3D strip magnetic field differential integral equation has no coordinate singular at pole ρ′ = 0. It has integrative
weak singular kernel.
2.2. The 2.5D Magnetic Field Differential Integral Equation

Substituting the EM field Fourier series, H(ρ, θ, z) =
∑∞

m=−ω Hm(ρ, z)eimθ, into the 3D strip magnetic
field differential integral equation (2), we derive the 2.5D equations in the cylindrical coordinate system
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3. The 3D and 2.5D Magnetic Filed Garlekin Equation
We derive the 3D and 2.5D magnetic field Garlekin equation in the cylindrical coordinate system.

3.1. The 3D Magnetic Field Garlekin Equation
Substituting field and coordinate transformation from rectangle to cylinder into the magnetic field Galerkin

equation [2], we derive the 3D magnetic field Garlekin equation in the cylindrical coordinate system as followsZ
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3.2. The 2.5D Magnetic Field Garlekin Equation
Upon substituting the Fourier series, H(ρ, θ, z) =

∑∞
m=−ω Hm(ρ, z)eimθ into the 3D Garlekin equation (5),

we derive the 2.5D magnetic field Garlekin equation in the cylindrical coordinate system as followsZ
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Figure 1: Rotation magnetic field Hθ in time =0 s.
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Figure 2: Rotation magnetic field Hθ in time =0.1 s.

4. 3D and 2.5 D EMS Modeling

4.1. 3D EMS Modeling
We use collocation FEM the 3D strip magnetic field differential integral equation (2) in the boundary strip

domain including pole point ρ = 0, and the 3D magnetic field Galerkin equation (5) in the reminder internal
domain without pole ρ = 0 to construct 3D AGILD EMS magnetic field modeling for EM field in the Stirring
and motor etc industrial engineering and sciences.
4.2. 2.5D EMS Modeling

We use collocation FEM the 2.5D strip magnetic field differential integral equation (4) in the boundary
strip domain including pole point ρ = 0, and use the 2.5D magnetic field Galerkin equation (6) in the reminder
internal domain without pole ρ = 0 to construct 2.5D AGILD EMS magnetic field modeling for EM field in the
stirring and motor etc industrial engineering and sciences.

5. The Applications of the AGILD EMS Modeling
Our 3D and 2.5D AGILD and GL EMS modeling has been used to calculate the EM field for several EM

stirring with variable style. Some asynchronous EMS stirring is designed as follows: its outer radius is 500 mm,
the internal radius is 350mm, and it is divided 6 sectors. The electric current has inverse direction for any
adjoining two sectors. The input electric current density intensity is 1 A/mm2. The frequency is 4 Hz. Before
installation of the stirring without steel flow, the factor did measure the magnetic field intensity. By using digit
magnetic GAUSS meter, the measurement value of the magnetic field intensity at center of the stirring is 1500
Gauss. By using our 2.5D AGILD EMS modeling simulation, the evaluated magnetic field intensity is 1513.28
Gauss at center of the stirring. The rotational EM field is very accurate and very stable. The AGILD EMS
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rotation magnetic field in caster Hρ(ρ, θ, zc, t) at the 0.0∼0.25 second are plotted in the Figures 1 and 4. They
show that by using the GL EMS and AGILD EMS modeling, the rotational magnetic field’s frequency is exactly
4Hz. The GL EMS [3, 5] and 2.5D AGILD EMS magnetic field Hρ, Hθ intensity are plotted in Figures 5 and
6, the red curve is the GL magnetic field and blue curve is AGILD magnetic field, the two curves are close
matched. GL EMS and AGILD EMS modeling can be used for micro, nano motor, generator and group holes
geophysics and materials etc. We are developing GL and AGILD K-ε model steel flow driving by the EMS
Lorentz force and join it with AGILD EMS modeling to work for the steel and metal continuous casters.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Horizental Radius in X ( m)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

o
ri
z
e

n
ta

l
R

a
d

iu
s

in
(
m

)

Figure 3: Rotation magnetic field Hθ in time =0.2 s.
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Figure 4: Rotation magnetic field Hθ in time =0.25 s.
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Figure 5: The magnetic field Hρ intensity ,The red
line is GL magnetic field, The blue line is AGILD
magnetic field.
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Figure 6: The magnetic field Hθ intensity, The red
line is GL magnetic field, The blue line is AGILD
magnetic field.

6. Conclusions
Many EM field in the stirring and motor simulations show that the 3D and 2.5D AGILD, and GL EMS

modeling are accurate and fast and stable. The AGILD EMS has merits over existing FEM, FD, and Born
approximation. The 3D and 2.5D AGILD and GL EMS modeling will be new tools for widely applications in
the sciences and engineering.
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Time-domain Source-model Technique Analysis of
Two-dimensional Electromagnetic Scattering Problems

A. Ludwig and Y. Leviatan
Technion - Israel Institute of Technology, Israel

Time-domain integral equation solvers for analyzing transient scattering phenomena continue to be a subject
of considerable interest in the computational electromagnetics community. In this paper, we study a somewhat
different time-domain integral-equation solution. Instead of using a standard surface formulation, we present a
mesh-free formulation for the solution of the electromagnetic scattering problem of a two-dimensional metallic
cylinder illuminated by a TM (transverse magnetic) plane wave pulse. In the proposed solution, we adapt the
frequency-domain source model technique, which has been found to be efficient and versatile computational
tool for analysis of time-harmonic wave scattering problems, to allow direct time-domain analysis of transient
scattering problems. In this solution, the scatterer is replaced with a discrete set of spatially impulsive filamen-
tary sources, each carrying longitudinally-uniform but time-dependent electric currents that are subsequently
expanded in terms of pulse functions of yet-to-be-determined amplitudes. The filamentary sources are located
on a mathematical surface interior to the cylinder surface. They are assumed to radiate in an unbounded
free-space and their fields, which are known analytically, span the transient scattered field in the region exterior
to the cylinder. The source amplitudes are determined by requiring that the boundary condition for the total
tangential electric field be satisfied at a suitably chosen set of time instances and at a selected set of testing
points on the boundary of the cylinder. The effect of solution method parameters, such as the spatial density
and temporal discretization of the fictitious sources, on the accuracy and stability of the results is studied. A
spatio-temporal discretization criterion for an explicit formulation of the time-domain source-model solution is
presented to allow the use of a simple marching-on-in-time algorithm. The modification of this algorithm to
treat an implicit formulation of the time-domain source-model solution is discussed, and the advantages of such
a formulation are outlined. Finally, the use of a combined-source formulation and its effect on the resulting
stability is studied.
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New 2.5D/3D AGILD Geophysical EM Multiple Cross Holes’
Imaging

J. Li1, M. Oristaglio2, F. Xie1, and G. Xie1

1GL Geophysical Laboratory, USA
2Schlumberger-Doll Research, USA

Seismic wave, acoustic wave and electromagnetic (EM) field inversion are used for geophysical subsurface
imaging. Because there is electric conductivity in the Earth underground, the diffusion EM field with infinite
velocity causes the EM inversion more ill posed than seismic and acoustic inversion. The optimizing data
configuration, suitable frequency band, and vanishing boundary error, translating coordinate singularity in
forward modeling, and combining strong regularizing and weak regularizing etc. approaches will be benefit for
EM inversion. In this paper, we propose a “new 2.5D/3D AGILD geophysical EM multiple cross holes’ imaging”
algorithm. We choose the three, four, and five cross holes data configuration. Based on the AGILD EM modeling
and inversion in Piers 2005 in Hangzhou [1] and 3D and 2.5D AGILD EMS modeling in the cylindrical system
in Piers 2006 in Cambridge [2], we present the 3D EM modeling and multiple 2D conductivity inversion using
the multiple cross holes data. In existing 2.5D algorithm, the conductivity and EM parameters are supposed to
be independent on the variable θ and only 2D inversion is processed. Therefore, the existing 2.5 D algorithm
can only make rough imaging for whole cylinder subsurface. By using a variable weight average strategy, our
new 2.5D inversion can be used to do multiple 2D conductivity inversions using the multiple cross holes data.
In the other hand, there is strong coordinate singularity 1/ρ2 at ρ = 0 in exiting FD and FEM EM modeling
in the cylindrical coordinate that is a historical difficulty. Our 2.5D AGILD geophysical EM multiple cross
holes’ imaging algorithms overcome this difficulty because the strip magnetic field differential integral equation
has no coordinate singularity at ρ = 0. We use 3D strip magnetic field differential integral equation in the
boundary pole strip domain with pole ρ = 0 and use magnetic field Garlekin equation in the remainder domain
to construct 3D AGILD magnetic and EM field modeling to obtain the model data. Using statistics geology
average strategy, we make the 2, 3, 4, or 5 multiple cross holes’ 2D AGILD EM inversions. Our new AGILD
multiple cross holes’ imaging will be useful for geophysical exploration, oil exploration, Earthquake exploration,
geophysical engineering, environment characteristic monitoring, nondestructive testing, medical imaging, and
material and nano sciences etc sciences and engineering.
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