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A Fast Algorithm for Computing Band Gaps of
Three-dimensional Photonic Crystals

C.-C. Chang
Research Center for Applied Mechanics, Academia Sinica, Taiwan

R.-L. Chern
National Taiwan University, Taiwan

C.-C. Chang
Research Center for Applied Mechanics, Academia Sinica, Taiwan

In this talk, we present a finite difference formulation for efficiently computing band structures of three-
dimensional photonic crystals. First of all, we will show how to correctly discretize the double-curl equation
for the magnetic field so that the transversality condition is exactly satisfied in the discrete sense. The first
few branches of nontrivial eigenfrequencies that determine the major full band gaps of photonic crystals are
computed by interlacing an inverse method with conjugate gradient projection and full multigrid acceleration.
The presently developed method is applied to compute band structures of photonic crystals with modified
simple cubic lattice, tetragonal square spiral structure (direct and inverse structures), and diamond structure
with sp3-like configuration. The computed results for the modified simple cubic and square spiral structures
are in close agreement with those obtained by previous authors. Moreover, the sp3-like configuration made of
silicon and air is reported to have a large band gap which is larger than the largest reported elsewhere in the
literature.
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Numerical Simulation of Nonlinear and Parametric Oscillations in
a Semiconductor Resonator Structure

G. S. Makeeva1, O. A. Golovanov2, and M. Pardavi-Horvath3

1Penza State University, Russia
2Penza Military Institute of Artillery, Russia

3The George Washington University, USA

Abstract—The rigorous mathematical modeling of nonlinear oscillations in microwave strip-slot resonator
structure (RS), loaded with a distributed planar Gunn diode, is based on the solution of the threedimensional
diffraction boundary problem, formulated rigorously taking into account the full set of Maxwell’s equations and
the nonlinear equation of transport carriers in a semiconductor. Using our numerical approach to determine the
bifurcation points of the solution of nonlinear Maxwell’s equations, the transition region from the stationary
regime of the nonlinear semiconductor device behavior (i. e., the frequency multiplication and the stable para-
metric amplification) to the generation (the onset of self-oscillations) caused by the instability process in the
distributed Gunn diode, was simulated taking into account constrained geometries of strip-slot RS.

1. Introduction
Microwave technology of monolithic integrated/hybrid circuits (MMIC) is moving up to higher frequencies

and higher bandwidths, into the mm wave range, up and above 100 GHz. As the industry turns to MMIC
devices, planar geometries have to be used. The development and manufacturing of microwave or mm-wave
integrated semiconductor devices depends on the development of computer aided design (CAD) tools, based
on the accuracy and the adequacy of mathematical models by solving Maxwell’s equations rigorously. The
goal of the paper is to investigate the nonlinear physical phenomena and effects in a distributed semiconductor
insertion, loaded into a resonator structure (RS), using mathematical modeling at the electrodynamic accuracy
levels and computing the bifurcation points of the nonlinear Maxwell’s operator for the design of prospective
MMIC nonlinear semiconductor devices.

2. The Mathematical Model Using the Decompositional Approach on Nonlinear Au-
tonomous Multimode Blocks

The mathematical simulation of nonlinear oscillations in a microwave strip-slot RS, loaded with a distributed
planar Gunn diode (Fig. 1) is based on the solution of three-dimensional diffraction boundary value problems for
nonlinear Maxwell’s equations, complemented with the equation of transport carriers in semiconductor [1]. The
computational algorithm for solving the nonlinear diffraction boundary problem is based on the decompositional
approach into nonlinear autonomous multimode blocks [2]. The autonomous block, placed between cross-sections
S3 and S4 (Fig. 1), is nonlinear and it is included in the software package for the mathematical simulation of
linear microwave devices [3]. The procedure of the decomposition and recomposition with linear and nonlinear
autonomous blocks is described in [2].

For computing of the scattering matrix of the strip-slot resonator and the tapered section in the RS (Fig. 1)
a second decomposition was made. The method of the calculation of the scattering matrix of interfaces between
regular strip-slot lines (SSL) was proposed in [4], and the method of determining of the scattering matrix of the
tapered section is described in details in [5].

The geometry of the tapered section is approximated by a function on f(z) = α · z − β · sin γ · z, were α, β,
γ are approximation coefficients. The accuracy of the results of mathematical modeling of the tapered section
depends on the number of step discontinuities p (p = 10), the number N of eigenwaves taken into account at
the interfaces between regular SSL (N = 5) and the number n of the basis functions taken into account at
virtual waveguides using the numerical method of multimode autonomous blocks [6] n = 25, providing the high
accuracy (better than 0.001%) of computation of propagation constants of eigenwaves of SSL.

The mathematical model of the nonlinear semiconductor RS was created by taking into account higher order
nonlinearities by using five combination frequencies M = 5 [1], the number of eigenwaves on regular SSL for each
of the combination frequencies is N = 5 at “seaming” of fields at the interfaces between SSL. The mathematical
model of the distributed planar Gunn diode accounts for the charging in the semiconductor and the ohmic
contacts [1].
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3. Accurate Electromagnetic Modeling of Nonlinear and Parametric Effects in the Semi-
conductor Insertion Loaded into the Resonator Structure

Let a monochromatic electromagnetic wave of frequency ω1 incident upon the input crosssections S1, S2 of
RS loaded with the planar Gunn diode (Fig. 1). The waves are the fundamental and the higher-order modes of
SSL having known magnitudes C+

n(α)(ω1), where α is the index of cross-sections, n are the indexes of eigenwaves
of SSL. It is necessary to determine the magnitudes C−k(α)(ωm) of reflected (in local coordinate system on
the cross-sections S1, S2) modes on combination frequencies ωm, where m are the indices of the combination
frequencies.

The results of computing the normalized magnitudes
∣∣∣C−1(2)(ω2)

∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ of the reflected (on the output

cross-section S2) fundamental mode at the second time harmonic (m = 2), with respect to the magnitude of
the incident (on the input cross-sections S1) fundamental mode at first time harmonic (m = 1), depending on
the resonator length L for variable magnitudes of

∣∣∣C+
1(1)(ω1)

∣∣∣ are represented in Fig. 2. For comparison, the

normalized magnitudes
∣∣∣C−1(2)(ω1)

∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ of the reflected fundamental mode at the first time harmonic

(m = 1), with respect to the magnitude of the incident fundamental mode, are also shown in Fig. 2.

Figure 1: Resonator structure (RS) with the nonlinear
semiconductor insert: 1—tapered section; 2—distributed
planar Gunn diode; 3—strip-slot resonator (SSR).

Figure 2: Efficiency of frequency multiplication depend-

ing on the resonator length L: curve 1—C+
1(1)(ω1) =

16V/mm; 2—24V/mm; 3—32 V/mm; 4—40V/mm;
f1 = 30GHz; −−−m = 2, − −m = 1

The results of numerical modeling were obtained for the biasing electric field E0/ω0 = 1000V/mm (at point
4 of the observation of electrostatic field [1]), and for the parameters of the epitaxial film ε = 12.5, µ = 1,
DF = 200 cm2/c; n0 = 1.5 · 1015 cm−3, and the substrate ε = 12.5; µ = 1; the length of planar semiconductor
insertion is l = 0.3mm.

The results of computing of the normalized magnitudes
∣∣∣C−1(2)(ω2)

∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣, depending on the value of

parameter n0/f , where f is the frequency, n0 is the electron concentration (in the active layer of the semi-
conductor n0 = ND, were ND is the doping density) for variable

∣∣∣C+
1(1)(ω1)

∣∣∣ are represented in Fig. 3(a). For

comparison, the normalized magnitudes
∣∣∣C−1(2)(ω1)

∣∣∣ /
∣∣∣C+

1(1)(ω1)
∣∣∣ are also shown in Fig. 3(b).

It follows from the results of electromagnetic modeling, shown in Figs. 2 and 3, that the nonlinear effect
of frequency multiplication in the distributed planar Gunn diode in the RS depends on changes of magni-
tudes C+

1(1)(ω1) of incident wave. If C+
1(1)(ω1) increases, the efficiency of frequency multiplication K1(ω2) =

20 lg
|C−1(2)(ω2)|
|C+

1(1)(ω1)| decreases (as for the amplification coefficient K1(ω1) = 20 lg
|C−1(2)(ω1)|
|C+

1(1)(ω1)| at the first time harmon-

ics); because the electromagnetic field is extinguished when the value of the electric field in semiconductor
becomes smaller than the Gunn threshold. The nonlinear effect of frequency multiplication is significant for the
optimum value of the parameter n0/f , because charging effects, depending on the ratio of the frequency f and
the Gunn effect transit-time frequency, determine the increase of the nonlinearity coefficient of the semiconductor
medium even for small values of C+

1(1)(ω1).
The results of numerical calculations of parametric amplification coefficient Ky(ω1) for small signal case,

depending on the distance d between the RS strips, (in fact, d determines the intensity of the biasing electric field
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E0), and taking into account variations of the electron concentration n0 in the semiconductor, are shown in Fig. 4.

(a) (b)

Figure 3: Efficiency of the frequency multiplication (a) and the amplification coefficient (b) depending on the elec-

tron concentration n0: curve 1– C+
1(1)(ω1) = 16 V/mm; 2– 24V/mm; 3– 32V/mm; 4– 40V/mm; f1 = 30GHz; other

parameters are the same as in Fig. 1.

4. Numerical Modeling of the Onset of Self-oscillations by Computing the Bifurcation
Points

The numerical method, developed by us in [7], was used to determine the bifurcation points of the nonlinear
Maxwell’s operator. The generation in the distributed planar Gunn diode loaded into the strip-slot RS, caused
by the instability process in the semiconductor with a bulk negative conductivity, was simulated taking into
account the constrained geometries. The bifurcation points are those values of the bifurcation parameters, i. e.,
the frequencies fs, where self-excited oscillations appear [1]. Using the auxiliary computing algorithm [7] the
necessary and sufficient conditions for the existence of the bifurcation point [8] in neighborhood of the numerical
parameter F can be investigated. If only the sufficient condition, that the eigenvalue of matrix A(z) is an integer
[8], is satisfied, in this point the magnitude of self-oscillations is equal to zero for F (see Table 1). If the necessary
and sufficient conditions for the existence of the bifurcation point [8] are satisfied, then there is a new solution at
the bifurcation point, described by the onset of non-zero magnitude self-oscillations at the bifurcation parameter
fs (see Table 1).

Table 1: The bifurcation parameter fs and parameter F depending on the distance d between RS strips,
determining the biasing electric field E0(ω0), and the electron concentration n0.

d,mm n0 = 1.5 · 1015, cm−3 n0 = 3.5 · 1015, cm−3 n0 = 5.5 · 1015, cm−3

F,GHz C−1(1,2)(ω)V/mm F,GHz fs,GHz C−1(1,2)(ω)V/mm F,GHz fs,GHz C−1(1,2)(ω) V/mm

0.00150 68.90 0.00 68.83 0.00 68.76 0.00

0.00200 51.68 0.00 51.63 0.00 51.58 75.39

0.00250 40.84 0.00 40.80 50.37 40.78 277.31

0.00300 33.98 0.00 33.95 79.56 33.91 398.16

0.00343 30.06 0.00 30.03 170.18 30.00 475.24

0.00400 25.81 0.00 25.78 281.31 25.76 495.23

0.00450 22.71 0.00 22.69 398.28 22.66 470.31

0.00500 20.43 0.00 20.41 451.71 20.39 463.31

0.00550 18.69 0.00 18.67 485.75 18.65 451.57

The results of computing the bifurcation points depending on the value of the intensity of biasing electric field
E0(ω0), are determined by the distance d between RS strips, and the electron concentration n0 in the semicon-
ductor are presented in Table 1, where F is a numerical parameter, fs are the bifurcation parameters, i. e., the
frequencies of the onset of self-oscillations, d is the distance between RS strips, n0 is the electron concentration in
the semiconductor, C−1(1,2)(ω) are the magnitudes of self-excited oscillations on the output cross-sections S1, S2.
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Figure 4: Efficiency of parametric amplification, de-
pending on the distance d between RS strips (i. e., the
biasing electric field E0(ω0)) for different electron concen-
trations n0: 1—n0 = 5.5 · 1015 cm−3; 2—3.5 · 1015 cm−3;
3—1.5 · 1015 cm−3; f1 = 15 GHz, C+

1(1)(ω1)=0.01V/mm.

The optimum parameters and the size of the planar
Gunn diode for the efficiency of the generation and para-
metric amplification were determined by taking into ac-
count constrained geometries. The optimum value of d =
0.00343mm determines the maximum of parametric am-
plification coefficient Ky(ω1) (Fig. 4), when the frequency
of self-excited oscillations in the transit-time mode of the
planar Gunn diode (fs = 30GHz from Table 1) is equal
to the frequency of pumping wave f = 2f1 in the degener-
ate regime of parametric amplification. At this frequency
for n0 = 5.5 · 1015 cm−3 the magnitude of self-excited os-
cillations (C−1(1,2)(ω) = 475.24V/mm) is more than for
n0 = 3.5 · 1015cm−3 (C−1(1,2)(ω) = 170.18V/mm), that is
why increasing the nonlinearity of the “dynamic capacity” of the planar Gunn diode provides an increasing
parametric amplification coefficient Ky(ω1) (Fig. 4). It follows from the results of computing (Table 1) that for
n0 = 1.5 · 1015 cm−3 there is no self-oscillations in the planar Gunn diode, as this is the stable regime of the
steady state domains [9].

5. Conclusion
The accurate electromagnetic modeling of nonlinear and parametric oscillations in microwave stripslot RS

loaded with a distributed planar Gunn diode shows how the efficiency of the frequency multiplication and
the parametric amplification depends on the magnitude and the electron concentration in the semiconductor.
The results of computing the bifurcation points by our numerical method permit to analyze the optimum
parameters and the size of the distributed planar Gunn diode in RS for the efficient generation and parametric
amplification taking into account constrained geometries. The new results of research into nonlinear interactions
(self-oscillations, frequency multiplication, parametric amplification) in distributed planar semiconductor Gunn
diodes could be used for future MMIC devices, in particular, new microwave mm- or submm-wave generators,
frequency multipliers, parametric amplifiers.
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Study of a Simple Geometry Illuminating Convergence Issues in
the Method of Auxiliary Sources

G. Fikioris
National Technical University, Greece

The Method of Auxiliary Sources (MAS) is often applied to problems involving a closed, smooth, perfect
conductor (PEC), illuminated by an external source: One seeks to approximately satisfy the boundary conditions
on the PEC surface using a large number of fictitious sources located inside the surface. Once these sources are
determined, one can calculate quantities such as the PEC surface current, or the (total) field. It is natural to
understand MAS “convergence” as convergence of the field thus determined to the true field as the number of
fictitious sources increases indefinitely. It is known that convergence has to do with the singularities of the true
field when extended to the region inside the PEC surface.

Recent papers (e.g., [1, 2]) apply MAS to the case where the aforementioned scatterer is an infinitely long
circular cylinder. For this simple special geometry, for which much can be done analytically, the results helps
one understand various aspects of MAS and can be used to investigate the accuracy of MAS.

The present paper revisits the infinitely long circular cylinder, but focuses on the issue of convergence. For
certain external illuminations and auxiliary-source configurations, we show that an alternative (to the above)
concept of “convergence” — namely, convergence of the MAS sources themselves — can also be useful. Although
convergence is often unambiguous, there exist cases where the scattered field converges while the MAS sources
diverge. Using simple manipulations, we develop conditions — related to the aforementioned singularities of
the true field — for this phenomenon to occur. We show that our detailed analytical results (which are possible
because of the simplicity of our geometry) provide insight into MAS in general. We point out many similarities
between our results and recent studies on the application of numerical methods to Hallen’s and Pocklington’s
equations with the approximate kernel [3].
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A Parallel Computer Implementation of Fast Low-rank QR
Approximation of the Biot-Savart Law

D. A. White, B. J. Fasenfest, and M. L. Stowell
Lawrence Livermore National Laboratory, USA

Abstract—In this paper we present a low-rank QR method for evaluating the discrete Biot-Savart law on
parallel computers. It is assumed that the known current density and the unknown magnetic field are both
expressed in a finite element expansion, and we wish to compute the degrees-of-freedom (DOF) in the basis
function expansion of the magnetic field. The matrix that maps the current DOF to the field DOF is full, but if
the spatial domain is properly partitioned the matrix can be written as a block matrix, with blocks representing
distant interactions being low rank and having a compressed QR representation. The matrix partitioning is
determined by the number of processors, the rank of each block (i. e., the compression) is determined by the
specific geometry and is computed dynamically. In this paper we provide the algorithmic details and present
computational results for large-scale computations.

1. Introduction
The computation of magnetic fields from a prescribed electric current is a common problem in magnetic

design and analysis. One approach is to form the problem as a Partial Differential Equation (PDE) for the
unknown field with the prescribed electric current as the source term. Regardless of the particular PDE for-
mulation, e. g., a magnetic vector potential formulation or a mixed B-H formulation, a large volumetric mesh
must be employed, and some boundary condition must be applied on the outer boundary of the mesh. In
contrast to the PDE approach, the Biot-Savart law can be employed to directly compute the magnetic field due
to the prescribed current [1]. The advantage of the Biot-Savart law approach is that a full volume mesh is not
required, and no boundary conditions need be applied. The disadvantage of the Biot-Savart approach is the
computational cost, if there are O(N) magnetic field observation points and O(M) current samples the cost is
O(N ∗M). In this paper we review a fast low-rank QR method for compressing the M ×N Biot-Savart matrix.
The approach is similar to low-rank QR methods developed for boundary element electrostatics [2, 3] and for
low frequency electric field integral equations [4]. The key difference with our approach is that we are concerned
with volumetric current densities and implementation on parallel computers.

2. Formulation
The law of Biot and Savart is given by

~B(x) = ∇× ~A =
1

µ4π

∫

Ω′

~J(x′)× (x− x′)
|x− x′|3 d3x′. (1)

where J(x′) is the known current density at the source point x′, and B(x) is the desired magnetic flux density
at the observation point x. We assume that we have a finite element representation for J over the volume Ω′,
and a finite element representation for B over a surface Γ,

~J =
N∑

i=1

ξi
~W 2

i , ~B =
M∑

j=1

βj
~W 1

j , (2)

where ξj and βj are the ith degree-of-freedom (DOF), and ~W 2
i and ~W 1

j are vector basis functions. Inserting the
basis function expansions (2) into (1) yields the discrete Biot-Savart law

Mβ̄ = Zξ̄, (3)

where

Zij =
∫

Γ

∫

Ω′

1
µ4π

~W 2
i (x′)× (x− x′) · ~W 1

j (x)
|x− x′|3 dΩ′dΓ, (4)
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and
Mij =

∫

Γ

~W 1
i (x) · ~W 1

j (x)dΓ (5)

and where ξ̄ and β̄ are the arrays of DOF. The matrix M is a “mass matrix” due to the fact that the basis
functions are not orthogonal. The mass matrix is extremely sparse and the computational cost for forming and
solving this matrix is negligible. In many applications the problem of determining the B-field can be posed in
terms of the magnetic vector potential A = ∇×B with

~A(x) =
1

µ4π

∫

Ω

~J(x′)
|x− x′|d

3x′. (6)

Using a finite element representation for A yields another version of the discrete Biot-Savart law

~J =
N∑

i=1

ξi
~W 2

i , ~A =
M∑

j=1

αj
~W 1

j , (7)

Mᾱ = Yξ̄, (8)

where

Yij =
∫

Γ

∫

Ω′

1
µ4π

~W 2
i (x′) · ~W 1

j (x)
|x− x′| dΩ′dΓ. (9)

We will refer to the M × N matrices Z and Y as Biot-Savart matrices. The computation of these matrices
involves singular and near-singular integrals. The surface integration is performed using standard Gaussian
quadrature points for each surface element. The volume integration uses an adaptive integration rule, which
varies the order of Gaussian quadrature based on the distance between the source point x′ and the observation
point x. When the surface element containing x is a face of the volume element containing x′, a highly accurate
height-based singularity cancellation quadrature rule is used [5]. The matrices (4) and (9) are constructed using
2-form or “face elements” for the basis functions W 2 and 1-form or “edge elements” for the basis functions W 1,
see [6] for details on the construction of the basis functions.

Our primary application for the discrete Biot-Savart law is providing boundary conditions for finite element
solution of multi-conductor eddy current problems. In each conductor we solve the time-dependent vector
diffusion equation using an edge element based A-φ finite element formulation [7]. Clearly the B-field in the
air surrounding the conductors is critical. The finite element formulation requires that either n̂ × ~A or n̂ × ~B
be specified on the conductor boundaries, corresponding to inhomogeneous Dirichlet or Neumann boundary
conditions, respectively. Our approach for dealing with the B-field in the air surrounding the conductors is to
use the discrete Biot-Savart law (3) or (8) as the boundary condition on each conducting surface.

3. Parallel Implementation
We assume that the volume Ω has been partitioned into K partitions, where K is the number of compu-

tational processors, with each partition having an equal number of volume elements. The volume elements
are distributed via the partitioning. The surface Γ is also partitioned into K equally sized surface partitions.
Note however that the surface elements are not distributed via the surface partitions, each processor can access
the entire surface mesh. The Biot-Savart matrix is then decomposed into a K × K block matrix, with every
block Zpq, p ∈ {1 : K}, q ∈ {1 : K} representing the interaction of surface partition Γp with volume Ωq. The
qth processor computes blocks Zpq, p = 1 : K, i. e., a column of blocks. Note that the matrix is decomposed
via a partitioning of elements, hence the matrices Zpq are overlapping in DOF space. The specific partitioning
algorithm used to partition the elements is not critical, in the examples below we employ a graph-based algo-
rithm [8]. The key point is that if the partitions Γp and Ωq are well-separated then the sub-matrix Zpq will
have a low-rank QR decomposition. The procedure for computing the low-rank QR decomposition is described
below. We define “well-separated” as follows: the bounding spheres for the element partitions Γp and Ωq are
computed, if the bounding spheres do not intersect then the partitions are considered well-separated and a
low-rank QR representation of Zpq is computed. We employ a recursive procedure for computing Zpq when
partitions Γp and Ωq are not well-separated. This results in a hierarchical representation for Z. If Γp and Ωq

are not well separated, Ωq is divided into eight equally sized sub-partitions, Γp is divided into four equally sized
sub-partitions, and the “well-separated test” is applied to the sub-partitions Γpi and Ωqj , i = 1 : 4, j = 1 : 8. A
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space-filling curve algorithm is used for creating the sub-partitions. The process is applied recursively, with a
low-rank QR representation computed for well-separated sub-partitions. The recursion is halted when a volume
sub-partition contains fewer than some number of elements, for application example 512. If at the lowest level
of recursion the interaction is not well separated, it is simply represented by a dense matrix.

No parallel communication is required in the construction of the hierarchical Biot-Savart matrix, each pro-
cessor has the elements that it needs to perform the integrals. Each processor has the same amount of work
hence the computation of is load balanced. Note, however, that in the low-rank QR approximation the rank k
is computed dynamically, and the rank k depends upon the geometry. Hence the application of the hierarchical
Biot-Savart matrix, i. e., the matrix-vector multiplication β̄ = Zξ̄, may not be perfectly load balanced. Also
note that the application of the hierarchical Biot-Savart matrix does require parallel communication. This
communication is as follows: (1) each processor q does a gather operation to get the values of ξ̄ that it needs,
(2) each processor q loops over the sub-matrices Zpq, p = 1 : K and computes β̄q = Zpq ξ̄q, (3) each processor
participates in a global reduction on β̄q.

Figure 1: Hierarchical partitioning of the Biot-Savart matrix. The highest level of partitioning is based on
the number of processors, as represented by the left-most matrix. The sub-matrices Zpq representing near
interactions are hierarchically decomposed into 8 sub-volumes and 4 sub-surfaces, as illustrated by the rightmost
matrix.

4. Low-rank QR Decomposition
When Γp and Ωq are well separated the matrix Zpq will have a low-rank representation

Zpq
m×n ≈ Qm×k ×Rk×n, (10)

where k is the rank. We do not want to form the entire Zpq and then compress it, rather we sample the matrix
by picking s rows and columns of Zpq, where s is some predetermined number, e. g., 50. The procedure for
picking the sampled rows and columns is ad-hoc, the procedure that we employ is described in [4]. The sampling
procedure is solely linear algebra, it does not depend upon the particular Green’s function, finite element basis
functions, etc. For the ad-hoc sampling procedure to be effective we must have s greater than the expected
rank. The algorithm for computing Qm×k and Rk×n is as follows:
Step 1: Form the sampled column matrix Sc

m×s and the sampled row matrix Sr
s×n.

Step 2: Compute the rank-revealing QR decomposition Q̃m×sR̃s×s = Sc
m×s using LAPACK routines DGEQPF

and DORGQR. The rank k is determined by the criteria R̃kk < thresh · R̃11 where thresh is a threshold
value, we then keep only k columns of Q̃, denote this as Qm×k, and discard R̃.

Step 3: We form a new matrix Q̂s×k by taking s rows of Qm×k, the exact same rows as used to construct Sr.
Step 4: Compute the least-squares solution to Q̂s×kRk×n = Sr

s×n using LAPACK routine DGELSS.

At this point we have the desired matrices Qm×k and Rk×n which approximate Zpq
m×n. The quality of the

approximation, and the amount of compression (the rank k), are determined by the value of thresh used in Step
2 above. Our approach, being based on highly tuned LAPACK routines, is efficient both in terms of FLOPS
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and memory usage. The complexity is O(m · s) + O(s · n), using a fixed value of s yields a linear complexity in
m and n.

5. Examples
In these examples we compute a hierarchical low-rank QR approximation of the matrix defined by Eq.( 9).

For the first example consider the geometry shown in Fig. 2. This geometry consists of 19000 volume elements
and is partitioned for 16 processors. Therefore the Biot-Savart matrix will be a 16×16 block matrix. Each block
Zpq has roughly 1200 rows and 4000 columns. Using values of s = 50 and thresh = 0.005 gives the parallel rank
map shown in (11). The compression is significant, each 1200×4000 matrix is compressed to Q1200×k +Rk×4000

where k is the value shown in (11). Note that the blocks labeled with rank 00 are near interactions and have
full rank. These blocks were decomposed further as explained in Section 3 above. For example, the Z11 near-
interaction matrix will be decomposed into 8 sub-volumes and 4 sub-surfaces, each resulting sub-matrix has
roughly 270 rows and 560 columns. The resulting rank map for the Z11 sun-matrix is shown in (12). Again
the blocks labeled with rank 00 are near-interactions and have full rank. In this specific case the sub-partitions
have around 150 volume elements each, so they will not be partitioned further. The total compression was 60×
for this specific example.

The second example is shown in Fig. 3. The geometry consists of three conducting coils, the center coil
is driven with an independent current source, and we wish to compute the eddy currents in the coils due to
the B-field in the surrounding air. The problem consists of 20736 volume elements and was partitioned for 24
parallel processors, therefore the Biot-Savart matrix is a 24× 24 block matrix. The parallel rank map for this is
too large to show here, but the results were as follow: Each processor had 24 matrices to compute at the highest
level, on average 19 of these corresponded to well-separated regions and were compressed with an average rank
of 10. The remaining 5 full-rank matrices were further partitioned into 4 · 8 = 32 sub-matrices, and on average
29 of these corresponded to well-separated regions and were compressed with an average rank of 25. At the
lowest level of the hierarchy, the near interactions were represented, on average, by dense matrices of dimension
335×439, there were a total of 24·3 = 72 of these. The total compression was 109×. This compression represents
both the memory savings and the reduction in CPU time required to apply the Biot-Savart interaction.




00 14 16 00 12 10 5 8 5 4 12 20 12 7 7 7
5 6 6 5 8 12 00 21 00 21 6 4 9 11 18 11
19 00 21 00 00 17 7 12 11 7 00 12 24 12 10 10
11 00 12 12 00 00 11 00 15 9 17 7 13 14 12 19
6 13 11 9 16 00 14 00 00 12 6 12 16 14 23 5
6 6 5 8 12 00 21 00 21 6 4 9 11 18 11 5
9 7 7 10 34 00 00 00 15 8 5 9 12 18 17 21
12 00 16 9 9 4 8 5 4 12 00 15 9 6 8 19
16 00 17 17 11 5 9 6 6 45 00 44 12 8 10 13
00 12 14 00 00 9 23 12 8 25 9 16 11 11 13 11
21 21 12 24 11 8 12 12 9 00 12 00 00 12 29 10
14 12 10 16 19 9 17 12 10 00 9 00 00 15 00 5
8 5 7 7 11 20 12 15 00 6 5 8 12 00 18 6
9 11 8 10 18 9 22 14 16 13 6 12 00 45 00 5
8 7 6 10 11 15 20 16 00 9 4 11 37 00 00 15
38 00 16 00 16 11 7 11 10 7 00 15 00 14 12 11




(11)




00 11 19 38 00 12 31 21
23 16 21 16 00 36 17 27
26 00 35 00 14 23 43 33
26 13 00 42 41 13 00 00


 (12)

The difference in compression for these two examples, 60x vs 109x, indicates that the amount of compression
depends upon the number of elements, greater compression will be a achieved as the computational mesh is
refined. If the computational mesh were refined, the well-separated interactions would still have the same rank,
hence the cost of the well-separated interactions is O(N). Each near-interaction is recursively decomposed
into 4 · 8 = 32 interactions, most of which are again well-separated and have low-rank. The dominant cost
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Figure 2: Computational mesh for a linear induction
motor partitioned for 16 parallel processors.

Figure 3: Computational mesh for an inductive cou-
pling application partitioned for 24 parallel proces-
sors.

is the nearinteractions which are represented as dense m × n matrices, where m and n are determined by
fixed parameters (e. g., the recursion halting parameter of 512 elements) which are independent of the global
dimensions M and N . The number of near interactions is, asymptotically, O(N log(N)), hence the overall
method is O(N log(N)).

Acknowledgement
This work was performed under the auspices of the U.S. Department of Energy by the University of California,

Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

REFERENCES

1. Jackson, J. D., Classical Electrodynamics, 1962.
2. Kapur, S. and D. Long, “IES3: Efficient electrostatic and electromagnetic solution,” IEEE Comp. Sci.

Eng., Vol. 5, No. 4, 60–67, 1998.
3. Gope, D. and V. Jandhyala, “PILOT: A fast algorithm for enhanced 3d parasitic capacitance extraction,”

Micro. Opt, tech. Lett., Vol. 41, No. 3, 169–173, 2004.
4. Gope, D. and V. Jandhyala, “Efficient solution of EFIE via low-rank compression of multilevel predeter-

mined interactions,” IEEE Trans. Ant. Prop., Vol. 53, No. 10, 3324–3333, 2005.
5. Khaya, M. A. and D. R. Wilton, “Numerical evaluation of singular and near-signular potential integrals,”

IEEE Trans. Ant. Prop., Vol. 53, No. 10, 3180–3190, 2005.
6. Castillo, P., J. Koning, R. Rieben, and D. White, “A discrete differential forms framework for computational

electromagnetics,” Computer Modeling in Engineering & Sciences, Vol. 5, No. 4, 331–346, 2004.
7. Rieben, R. and D. White, “Verification of high-order mixed FEM solution of transient magnetic diffusion

problems,” IEEE Trans. Mag., October 2005. article in press.
8. Karypis, G. and V. Kumar, “A parallel algorithm for multilevel graph partitioning and sparse matrix

ordering,” J. Parallel Distr. Comp., Vol. 48, No. 1, 71–95, 1998.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 819

Complex Coordinate Transformation as a Radiation Condition in
Modal Methods

G. Granet, J. P. Plumey, and K. Edee
LASMEA UMR 6602 du CNRS, France

Modal methods and mode matching techniques are well established methods to solve wave guide and scat-
tering problems. Such methods lead to an eigenvalue problem that is transformed into a numerical matrix
eigenvalue problem by the method of moments. At this step, the boundary conditions that the field of the phys-
ical problem have to satisfy are included in the chosen expansion basis. For instance we chose periodic functions
with a pseudo periodic coefficient to represent the field in grating problems or sine function to represent a field
that should be zero on some boundary.

When considering problems in which radiation occurs (for instance leaky waves or discontinuities) we face
a dilemma: on one hand we would wish to obtain the correct solution and properly takes into account the
radiation boundary condition, on the other hand we would like to go on using the numerical tools that we have
already developed and optimised. Some ten years ago, those who were using the finite difference time domain
method faced also a similar problem. An elegant and efficient solution was then proposed by Berenger [1] who
has introduced the concept of the so called perfect matched layers (PML).

Derudder et al. [2] showed that PML could also be very useful in modal methods. Since the pioneer work
of Berenger many alternatives have been developed, one of which is the co-ordinate stretching introduced by
Chew et al. [3]. We also adopt this point of view that can be easily combined with our own parametric approach
[4]. We thus obtain efficient numerical tools able to analyse most guided wave problems including those with
surface waves like plasmons. Furthermore, the conjunction of periodic functions and stretched co-ordinates also
allows to derive a fast converging series expansion for the Green’s function of layered media.

In this presentation, we shall describe from the operator point of view the implementation of the stretched
co-ordinates as a radiation condition in any co-ordinate system. We will also discuss the accuracy limits
of the proposed approach as a function of the various stretching parameters. Many examples will be given
including radiation by structures that support plasmons and radiation by sources embedded in layered media
with corrugated interfaces.
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Element Method
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Abstract—We present a computational study of signal propagation and attenuation of a 200 MHz planar loop
antenna in a cave environment. The cave is modeled as a cylindrical guiding structure with a lossy wall. The
wall is nominally circular with a random roughness. To simulate a broad frequency band, the full wave Maxwell
equations are solved directly in the time domain via a high order vector finite element discretization using
the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results
for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random
rough surface meshes in order to generate statistical data for the propagation and attenuation properties of the
antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric
field are presented and discussed.

1. Introduction
The study of electromagnetic wave propagation in caves and tunnels is of great practical interest to antenna

engineers due to the increasing demands for reliable wireless communications systems in such environments.
Current wireless radio frequency (RF) communication systems were not designed to operate reliably in enclosed
environments such as caves and tunnels, and signal quality is severely compromised due to the rough and lossy
surfaces of the cave. Today there is limited ability to maintain communications in cave-like structures, tunnels
or subways, prohibiting the quick deployment of wireless systems in caves and tunnels. If the propagation
properties of the tunnel could be better characterized (dissipation, dispersion, fading, and channel capacity),
then a more robust communication system could be designed specifically for operation in such environments,
hence full wave EM simulations of propagation in this type of environment are very useful.

Much theoretical work in this field has been done in order to develop a better understanding of the RF
propagation channel. Dudley recently studied models for propagation in lossy circular tunnels [1]. He produced
expressions for the fields in terms of a Fourier transform over the axial variables, and presented the numerical
results for the field intensity both as a function of axial distance and as a function of radial distance. However,
this work only involved smooth tunnel walls and not the more realistic situation of rough wall tunnels. In this
case, the electromagnetic fields can be modeled as a stochastic process in a cave with random rough walls.
Recently, Pao and Casey have investigated the statistical properties of wave propagation in straight, rough-
walled tunnels [2, 3]. This work assumes a perfect electrical conductor (PEC) boundary at the rough wall/air
interface. A more realistic model needs to take into account the lossy nature of the rough walls and the cave
material (typically granite or some sort of earth like material with electrical conductivities on the order of
0.1 S/m).

In this paper we use a high order finite element discretization to solve the full wave Maxwell equations
directly in the time domain for the case of a planar loop antenna placed at the mouth of a straight, lossy rough
walled tunnel. We chose a time domain simulation in order to efficiently compute the response over a broad
frequency band. We begin with a brief description of the numerical method employed for this problem (as
implemented in the EMSolve code [4]). We then verify the numerical method against the theoretical results of
Dudley [1] for a planar loop antenna in a smooth lossy cave and discuss the limitations of the numerical model.
Finally, we proceed to solve the electromagnetic wave equation on a sequence of randomly generated meshes to
determine statistical properties for the power spectral density of the electric field.
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2. Numerical Formulation
We begin with the second order time dependent wave equation for the electric field in a 3 dimensional

domain Ω
ε

∂2

∂t2
E = −∇× (µ−1∇×E)− σ

∂

∂t
E− ∂

∂t
J inΩ

∇ · (εE) = 0 in Ω
n̂×E = Ebc on ∂Ω (1)

where ∂Ω is the two dimensional boundary of the domain, n̂ is the outwardly directed unit normal of this
boundary and J is a free current density source that can be added to drive the problem. The value Ebc represents
an arbitrary boundary condition imposed on the electric field intensity while ε, µ and σ denote, respectively,
the dielectric permittivity, magnetic permeability and electrical conductivity of the materials contained in the
domain Ω.

Applying an arbitrary order Galerkin finite element discretization to the wave equation (the details of which
can be found in [5, 6]) yields the following semi-discrete system of ordinary differential equations

Mε
∂2

∂t2
e = −Sµe−Mσ

∂

∂t
e− ∂

∂t
j (2)

where Mε, Mσ are finite element mass matrices, Sµ is a finite element stiffness matrix and e, j are discrete
arrays of finite element degrees of freedom. Applying a backward difference approximation for the first order
time derivative in (2) and a central difference approximation for the second order time derivative yields the
following fully discrete linear system of equations

Mεen+1 = (2Mε −∆t2Sµ −∆tMσ)en + (∆tMσ −Mε)en−1 − j′ (3)

where ∆t is the discrete time step, the integer n denotes the current time step and the time derivative of the
free current source has been directly incorporated into the new source term j’.

For the results shown in section 4 below we employ second-order interpolatory H(curl) basis functions along
with custom quadrature rules that yield a diagonal “mass” matrix Mε. The details of this discretization are
presented in [7]. This method is much more accurate than standard FDTD. Indeed, the numerical dispersion
for this method is O(h4) rather than O(h2) as it is for FDTD. Compared to higher-order FDTD schemes, this
method is better at modeling the jump discontinuity of fields across the air-earth interface.

3. Verification
Before we proceed to simulations of a random rough surface, we begin by verifying our numerical method

with known theoretical values for the case of a smooth, lossy tunnel. These results were computed by Dudley
according to the procedures described in [1]. We consider the case of an axially symmetric circular current loop
of radius b = 0.2 m placed at the mouth of a circular tunnel of radius a = 2.0m. The current loop is driven by a
time harmonic source of frequency f = 200 MHz. The electric field is “measured” along the length of the tunnel
at a radial observation point ρ such that ρ/a = 0.3. The tunnel has a relative dielectric constant of εr = 5.0.
We consider two cases, a tunnel with an electric conductivity σlow = 0.02 S/m and σhigh = 0.1 S/m.

For the numerical model, we discretize the tunnel domain in two different ways using both a Cartesian (or
“stair-step”) approximation to the smooth tunnel wall and a more accurate conforming cylindrical mesh (see
Figure 1 and Figure 2). For both cases, a planar loop of current of radius 0.2m is placed at one end of the
tunnel, while a simple absorbing boundary condition (ABC) is placed at the other. The ABC is imperfect for
anything other than plane waves at normal incidence, hence we make our tunnel mesh 75m long and ignore
field data from the last 20% of the tunnel mesh. A perfect electric conductor (PEC) boundary condition is
applied at the cross-sectional limits of the problem space to fully define the problem. For both the Cartesian
and Cylindrical meshes, the outermost PEC boundary is made sufficiently large to prevent spurious reflections.
The temporal dependence of the current source is a Gaussian pulsed sine wave centered at 200 MHz with a
20% bandwidth. The simulation is performed using high order p = 2 basis functions to mitigate the effects of
numerical dispersion.

In Figure 3 and Figure 4 we compare results for both numerical models (Cartesian and cylindrical meshes)
to the theoretical results for both conductivity values. Note that the agreement between the theoretical model
and the numerical model using the conforming cylindrical mesh are excellent, indicating that the proposed
numerical method is working properly. The discrepancies between the Cartesian results and the theoretical
results are due to the “stair-step” approximation to smooth surfaces, which is known to be problematic since
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such approximations fail to converge to a true cylindrical surface. While the Cartesian mesh is a bad choice
for modeling smooth tunnels, it is sufficient for modeling rough surface tunnels, which we will use in the next
section.

Figure 1: Cross section of smooth tunnel Cartesian
mesh.

Figure 2: Cross section of smooth tunnel conforming
cylindrical mesh.

Figure 3: Comparison between theoretical model
and two different numerical models at 200MHz for a
smooth cave with conductivity σlow = 0.02 S/m.

Figure 4: Comparison between theoretical model
and two different numerical models at 200 MHz for a
smooth cave with conductivity σhigh = 0.1 S/m.

Figure 5: Example of randomly generated cave mesh
with interior removed (close-up view).

Figure 6: Snapshot of computed electric field mag-
nitude at t = 89.6 ps.

4. Computational Results
We now proceed to apply the same process discussed above to the more complicated case of random rough

walled caves. The random rough surface is generated as follows. First, we generate a cylindrical surface of
radius 2 m and length 75 m. Next, we add a random perturbation with zero mean and a standard deviation
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0.28867m. Then, we smooth the random surface (low pass filter) to introduce a surface correlation of a given
length. Finally, we generate a 3D Cartesian mesh, where the electrical conductivity of each element depends
upon whether the element is inside the random surface (air) or outside the random surface (earth). For mesh
elements that straddle the random surface, a volume-fraction is used to determine the electrical conductivity
with values ranging between σlow = 0.02 S/m and σhigh = 0.1 S/m. To model the dielectric properties of the
earth, a constant dielectric permittivity of 5 times the free space permittivity ε0 (a typical value for granite)
is used. Each computational mesh consists of 583, 200 hexahedral elements, an example of which is shown in
Figure 5. Note that the portion of the mesh representing the air has been removed to illustrate the random
rough surface. The various simulation parameters for the random rough surface computations are summarized
in Table 1.

Table 1: Summary of computational statistics for 10 random cave simulations.

Avg. Cave Radius 2 m (1.33333 λ)

Cave Length 75m (50 λ)

Element Size (∆x) 0.167m (0.13111 λ)

Max Deviation of Surface Roughness 0.5m (0.33333 λ)

Standard Deviation of Surface Roughness 0.288675m (0.19245 λ)

Signal Type Modulated Gaussian pulse, planar loop antenna

Pulse Frequency 200MHz, 20% Bandwidth

Gaussian Width, Delay 4.67e–9s, 2.50e–8 s

No. of Trials 10

No. Unknowns per Trial ∼ 14 million

No. Parallel CPU’s per Trial 192

Figure 7: Mean power for 10 random cave simula-
tions at 5 different frequencies.

Figure 8: Variance of power for 10 random cave sim-
ulations at 5 different frequencies.

A total of 10 random caves were simulated. A time history was recorded at each x, for all time steps. This
data was used to find the spectrum at every spatial step. For each simulation the mean and variance of the power
spectral density (PSD) and phase were extracted over the bandwidth of the signal. Each run was normalized
by dividing by the total PSD magnitude at the first x-data point, thereby removing the characteristics of the
input signal, but preserving the relative magnitudes vs. polarization. The last 20% of the spatial samples were
removed to avoid reflections from the end of the cave (due to the imperfect nature of the ABC). The results
for computed mean power at 5 different frequencies are shown in Figure 7. Note that in general, the scattered
field from the rough surface walls fills in nulls which are created by destructive interference in the smooth case
(see Figure 3 and Figure 4 for comparison). In addition, note that the lower frequencies are attenuated more
rapidly than the higher frequencies as expected. In Figure 8 we plot the computed variance in power across all
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10 simulations. In Figure 9 we compare the smooth cave results (conforming cylindrical mesh, σlow) to random
rough wall results at 200 MHz.

Figure 9: Comparison between smooth wall and mean rough wall results at 200 MHz.

5. Conclusions
We have applied the high order time domain vector finite element methods described in [5–7] to the case of

RF electric field propagation in a lossy rough wall tunnel. This particular calculation has proved difficult to solve
using direct theoretical analysis. We have verified our numerical results by direct comparison to a theoretical
model for propagation in a smooth lossy cave. We have presented statistical data for the power spectral density
of a 200 MHz planar loop antenna and have compared our data in a rough walled cave to one with a smooth
surface. Further work will allow direct time domain modeling of more complicated cave structures with bends
and forks that are too complex for theoretical techniques.
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Direct and Accurate FDTD Modeling of Dispersive Media Using
a Fourth-order Rational Conductivity Function

C. Rappaport and M. Jalalinia
Northeastern University, USA

To analyze lossy, frequency dependent media over a wide RF bandwidth with FDTD, it is important to
capture the wave velocity and attenuation with a simple, efficient model. Using a single pole rational function
of the Z-transform variable (Z = ejw∆t) to model media conductivity along with constant real dielectric constant,
it is possible to generate a supplemental discretized time domain equation which closely matches measured values
across more than a decade of frequency. The agreement between measured and modeled propagation constant
and decay rate for more than 50 materials are often to within 5%. This formulation avoids memory-intensive
convolution operations and is at least as accurate as Debye models.

In the FDTD formulation, with electric field sampled at integer time steps E
n
, and magnetic field sampled

at half-integer steps H
n− 1

2 , Ampere’s Law presents a difficulty with the current term, which is computed using
electric field but which must be available at the magnetic field time instant. This is accomplished by choosing
an average current value between adjacent time steps J

n− 1
2 = σ

2 (E
n
+E

n−1
). The central finite differences used

in FDTD are second order accurate, while the averaging over adjacent time steps is only first order accurate.
A more precise solution is available using the Z-transform formulation of Ampere’s Law:

∇×H(Z) =
1− Z−1

∆t
∈ E(Z) + Z−

1
2 σ(Z)E(Z) (1)

with the understanding that E(Z) and H(Z) transform to integer and half-integer time samples. The Z-
transformed current J(Z) = σ(Z)E(Z), but only when the current values are sampled at the same time instances
as the electric field. To keep the time sample alignment of current in synchronism with magnetic field, the last
term on the right hand side of Eq. 1 transforms to J

n− 1
2 . Keeping the finite difference equation form of

the constitutive relation relating shifted current to electric field, the new rational function representation of
conductivity is:

Z−
1
2 σ(Z) =

b0 + b1Z
−1 + b2Z

−2 + b3Z
−3

1 + a1Z−1
(2)

With this choice, the entire right hand side of Eq. 1 remains a rational function of integer powers of Z, and thus
it can be readily converted to finite difference form. The additional term b3Z

−3 in Eq. 2 becomes necessary to
ensure three point fitting, with proper curvature, of the conductivity function to measured data. The real part
of conductivity, based on Eq. 2, is:

Re{σ(Z)} =
(b0 + b1 + a1(b1 + b2)) cos ω∆t/2 + (b2 + a1(b0 + b3)) cos 3ω∆t/2 + b3 cos 5ω∆t/2

1 + 2a1 cos ω∆t + a2
1

(3)

with five parameters b0, b1, b2, and b3 to eb determined from matching to measured data. The parameter a1 is
adjusted to satisfy special von Neumann stability conditions requiring that all zeros of the stability equation be
within the unit circle for a particular grid spacing interval.

*This work is supported by CenSSIS, the Center for Subsurface Sensing and Imaging Systems under the ERC Program

of the NSF (Award number EEC-9986821)
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A Matlab-Based Virtual Propagation Tool: Surface Wave
Mixed-path Calculator

L. Sevgi and Ç. Uluışık
Doğuş University, Turkey

Abstract—A new Matlab-Based, user-friendly virtual propagation tool (VPT) that can be used for multi-mixed
path surface wave path loss calculations has been designed. Any multi-mixed-path surface wave propagation
scenario may be specified by the user together with all the necessary input parameters, and path loss vs. range
plots may be produced. The effects of multi-mixed paths, electrical parameters of each propagation section, as
well as the frequency can be observed and extra path losses can be predicted. The VPT can be used both for
design and training purposes.

1. Introduction
In addition to decades of long-range marine communication systems in high frequency (HF) band surface

wave high frequency radars (HFSWR) have become a great potential in this frequency region for integrated
maritime surveillance systems (IMSS) both as primary and complementary sensors. Countries with wide-coastal
regions such as USA, Canada, France, Germany, Italy, Brazil, Turkey, Sri Lanka, China, India, etc., have already
deployed or completed the designs of such systems for their economic exclusive zones (EEZ) [1, 2]. One major
problem in HF communication/radar systems is the prediction of surface wave propagation path loss. The
propagation scenarios differ quite a lot from region to region. For example, engineers of the IMSS on the East
Coast of Canada need to know maximum monitoring range for a given transmitter power. On the other hand,
the problem of Turkey in the West Coast is to find out extra multi-mixed path propagation loss because of the
existence of many different scaled islands in the region.

At HF frequencies, ground wave propagation is dominated by the surface wave. As long as the transmitter
and receiver are close to surface direct and ground reflected waves cancel each other and only surface wave can
propagate. The Earth’s surface electrical parameters are important in reaching longer ranges. Sea surface is
a good conductor, but ground is a poor conductor at these frequencies. A challenging problem is to predict
surface wave path loss variations over mixed paths, such as sea-land or sea-land-sea transitions [3, 4]. A sharp
decrease occurs in signal strength along sea-land transition and the signal recovers itself beyond the island,
known as the Millington (recovery) effect [5].

We have introduced a few propagation packages for the calculation of surface wave propagation effects [6–
10], where analytical ray and mode models (i. e., Norton and Wait formulations) are hybridized to extend their
ranges of validity, accuracy, rate of convergence, etc., depending on such problem parameters as operational
frequencies, source/observer locations and the physical propagation environment. The WAVEPROB packages
uses analytical ray and mode methods in hybrid form that can handle propagation through standard atmosphere
over smooth spherical Earth and can be best used from a few hundred kHz up to 40–50 MHz [7]. The ray
shooting algorithm SNELL GUI [8] shoots a number of rays through a propagation medium characterized by
various piecewise linear vertical refractivity profiles, so the user may visualize various ducting and anti-ducting
characteristics depending on the supplied parameters. The packages RAY GUI and HYBRID GUI [9] can be
used to investigate ray/mode formulation inside a 2D non-penetrable parallel plate waveguide. The user may
analyze individual ray/mode contributions and their collective effects as well as hybrid forms. Finally, the multi-
purpose SSPE GUI package completes the virtual set, which can be used directly in simulations of short- and
long-range radiowave propagation over user-specified, non-smooth Earth’s surface through non-homogeneous
atmosphere [10].

In this study, we have developed and designed a new Matlab-Based, user-friendly virtual propagation tool
(VPT) that can be used for multi-mixed path surface wave path loss calculations. The user may design a
propagation scenario by just using the computer mouse, specify all other input parameters, and produce path
loss vs. range plots. The effects of multi-mixed paths, electrical parameters of each propagation section, as well
as the frequency can be observed and extra path losses can be predicted. The VPT can be used both for design
and training purposes.
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2. Analytical Formulation Based on Ray-mode Approach
The fundamental analytic models are based on ray and mode techniques and are mostly known as Norton [3]

and Wait [4] formulations, respectively. The Norton formulation extracts a ray-optical asymptotic approximation
from a wavenumber spectral integral representation. The Wait formulation restructures the spectral integral as
a series of normal modes propagating along the earth’s surface. They both assume a smooth spherical earth
(and/or its earth-flattened approximate equivalent) with various smooth, penetrable ground characteristics, a
radially homogeneous atmosphere above, and excitation by a vertical or a horizontal electric dipole on or above
the earth’s surface.

Norton and Wait formulations parameterize the propagation process in terms of different phenomenological
models, their ranges of validity, accuracy, rate of convergence, etc., depending on such problem parameters as
operational frequencies, source/observer locations and the physical propagation environment, differ as well, with
particular impact on computations. Using the ray-mode approaches separately or in hybrid form, one may deal
with smooth-boundary problems [11], such as

• Surface wave path loss or field strength variation with respect to range (especially beyond the horizon and
when both transmitter and receiver are on the surface).

• Range and/or height propagation variations in interference regions (i. e., when transmitter and receiver
are above the surface and within the line-of-sight (LOS)).

• Surface wave path loss over multi-mixed propagation paths to account for, for example, land-sea or sea-
land-sea (island) transitions.

It should be noted that ray-mode and their hybridized techniques cannot handle problems, such as propagation
over rough surface terrain, and/or through surface and/or elevated ducts formed by inhomogeneous vertical
as well as horizontal atmospheric conditions. Although height gain functions in mode theory [11] can be used
to account for transmitter/receiver heights, it is difficult to deal with receiver heights in diffraction regions
(beyond LOS) because of numerical problems in calculating higher order terms in the series representation of
Airy functions.

3. Millington Effect and ITU Curve Fitting Method
Although perfectly reflecting boundary assumption provides in general sufficient approximation at VHF and

above (i. e., frequencies higher than 100–200 MHz), the use of impedance boundary condition becomes essential
at HF frequencies and below. This is especially required for the simulation of long-range marine communication
and/or ocean surveillance systems using HF frequencies. A challenging problem is to predict surface wave path
loss variations over mixed paths, such as sea-land or sea-land-sea (island) transitions. A sharp decrease occurs
in signal strength along sea-land transition and the signal recovers itself after land-sea transition (beyond the
island), known as the Millington (recovery) effect [5].

The path loss of a communication system between any pair of transmitter/receiver is defined as

Lp(d) = 10 log
(

Pr

Pt

)
(1)

For a Pt = 1 kW transmitter (i. e., for a short electric dipole with a dipole moment of M = 5λ/2π), the
received power at an arc distance d can be determined from the computed field strength E via

Pr(d) =
Er(d)2

Z0
× λ2

4π
(2)

The path loss is then obtained from these two equations as

Lr(d) = 142.0 + 20 log (fMHz) + 20 log (EµV/m) [dB] (3)

where the units of the operating frequency and field strength are MHz and dBµV/m, respectively.
The Millington method uses a graphical interpolation approach to calculate the mixed path losses. Figure 1

shows a multi-mixed propagation medium including 5-paths. Let’s consider a scenario for 2-paths with different
surface parameters. The Millington method is based on an interpolation of a direct electric field ED and an



828 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

Figure 1: Multi-mixed-path surface wave propagation scenario for 5 paths.

inverse electric field EI as:

ED = E1(d1) + E2(d1 + d2)E2(d1) (4)
EI = E2(d2) + E1(d1 + d2)E1(d2) (5)

Here, the field values E1(d1), E2(d2), E2(d2), E1(d1 + d2), and E2(d1 + d2) are defined as follows:

E1(d1) : Calculated field strength at a distance d1 over homogeneous Med. I
E1(d2) : Calculated field strength at a distance d2 over homogeneous Med. I
E2(d2) : Calculated field strength at a distance d2 over homogeneous Med. II
E1(d1 + d2) : Calculated field strength at a distance d1 + d2 over homogeneous Med. I

(the whole path is assumed as Med. I)
E2(d1 + d2) : Calculated field strength at a distance d1 + d2 over homogeneous Med. II

(the whole path is assumed as Med. II)

Then the total electric field is calculated by taking the average as

E(d1 + d2) = 0.5(ED + EI). (6)

The Millington method can be used for 3-paths in a similar way. If the path lengths are d1, d2 and d3,
respectively, the direct electric field ED and the inverse electric field EI are calculated via

ED = E1(d1) + E2(d1 + d2)E2(d1) + E3(d1 + d2 + d3)E3(d1 + d2) (7)
EI = E3(d3) + E2(d3 + d2)E2(d3) + E1(d3 + d2 + d1)E1(d3 + d2) (8)

and the total electric field is calculated again by taking the average as

E(d1 + d2 + d3) = 0.5(ED + EI) (9)

The extension to n-path formulas is straightforward.

4. Matlab-Based HF PATH Package
The front panel of the HF Path package is designed as shown in Figure 2, and is divided into three sub

regions. The left part of the GUI is reserved for the user-supplied parameters. The user specified parameters
are explained in Table 1. The operating frequency, range increment, transmitter height and receiver height are
supplied first. Then the electrical parameters; the conductivity and the relative permittivity of the sea and land
are to be specified next (µ = µ0 everywhere and the atmosphere is homogeneous). The parameters of all sea
paths (or land paths) are assumed same. Although it is doable, the package doesn’t allow the user to specify
N -path with N -different electrical surfaces. Finally the user specifies the number of paths along the range using
a popup menu. Once the user determines the number of paths N , only N editable textboxes become visible to
enable the user to specify the lengths of the paths. For example, in Figure 2 the number of paths is 6, so there
are 6 visible textboxes. However in Figure 3, the number of paths is 3, so there are only 3 visible textboxes.
It is also important to note that the first segment is always sea, and that a sea segment is always followed by
a land segment and vice versa. The mid-part of the front panel is reserved for the figures. The upper figure
shows the geometry of the scenario and changes whenever the number of paths is changed by the user via the
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corresponding popup menu. The lower figure displays both the geometry and plots for Path Loss vs. Range or
Field Strength vs Range variations. The sea and land segments are shown in blue and green, respectively, as
shown in Figure 2. The lengths of the blue and green filled areas correspond to actual lengths specified by the
user.

Figure 2: The front panel of HF PATH package.

Table 1: User-specified parameters of the HF Path package.

Parameter Explanation Default Value

Frequency Operating Frequency 5MHz

Range Increment The difference between each observation point 0.5 km

Transmitter Height Height of the Transmitter in [m] 0m

Receiver Height Height of the Transmitter in [m] 0m

Conductivity of Sea Conductivity of each sea segment in [S/m] 5 S/m

Conductivity of Land Conductivity of each segment land in [S/m] 0.01 S/m

Relative Permittivity of Sea Relative permittivity of each sea segment 70

Relative Permittivity of Land Relative permittivity of each land segment 15

Number of Paths Number of sea and land segments between the
transmitter and the receiver (min :1 ; max: 6)

3

Length of Path 1 Length of the first segment (sea) in [km] 100 km

Length of Path 2 Length of the second segment (land) in [km] 100 km

Length of Path 3 Length of the first segment (sea) in [km] 100 km

: : :

: : :

The control push buttons are located at the upper right part of the panel. Pressing the “Info” button opens
the MATLAB Help window that includes explanations on how to use the package. Typing “help HF Path” at
the MATLAB command line also displays the same explanations. The “Close” button terminates the program.
The “Clear” button clears the graph. Once the “Plot” button is pressed, the user-specified parameters are
written line by line to an input file named “HFMIX.INP”, then the program HFMIX.EXE is executed and the
outputs are both displayed in the figure and written to files “LMIX.DAT” and “EMIX.DAT”. Both files consist
of 2-columns of data in text format. The first column belongs to the range values in km and the second column
of LMIX/EMIX corresponds to Path Losses/Field Strengths in dB. The check boxes below the Plot button are
used to select whether to plot the Path Loss vs. Range or Field Strength vs. Range. Operational parameters
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may be changed by the user and multi-plots may be displayed by pressing the plot button more than once (as
long as the propagation scenario, i. e., the segment lengths, is kept same). The user may clear previous plots by
using the “Clear button” before the “Plot button”.

Figure 3: Path loss vs. range for a 3-section-path propagation scenario at 0.5 MHz, 5 MHz and 10MHz.

Figure 4: Path loss vs. range for a 4-section-path propagation scenario at 5 MHz, 15 MHz, and 30MHz.

5. Matlab-Based HF PATH Package
To show the power and beauty of the HF PATH package some examples and typical results are presented

in this section. The first case belongs to a propagation scenario consisting 3-paths and is displayed in Figure 3.
The lengths of the segments are: d1(sea) = 120 km, d2(land) = 80 km, d3(sea) = 200 km, which makes the total
range from the transmitter to the receiver 400 km. The conductivity of sea/land are specified as 5/0.01 S/m.
The relative permittivities are 70/15. The height of the transmitter and the receiver are both chosen as 0 m.
The calculations are performed for three different operating frequencies; 0.5 MHz, 5 MHz, and 15MHz. All three
Path Loss vs. Range graphs corresponding to these frequency values are displayed in the figure with different
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colors. The Millington effect is observed at MHz frequencies and above as shown in the figure. The sharp
decrease on the sea-land transition region, and signal recovery beyond the land-sea transition are also visible in
the figure. It should be noted that, the higher the frequency the higher the path loss at the same distance.

The next example consists of a 4-segment propagation path and results are shown in Figure 4. In this
example the segment lengths are same and are equal to 100 km. The range variations of path losses at three
different operating frequencies are plotted in the figure.

The third example is shown in Figure 5 for a 5-segment-path. The example corresponds to a propagation
scenario with 2 islands with lengths of 32 km and 58 km at radial distances 98 km and 274 km from the source.
The Path Loss vs. Range graphs correspond to frequency values of 5 MHz, 15 MHz and 30 MHz.

The last example is another 3-section-path propagation scenario as shown in Figure 6. The plots correspond
to different types of lands with conductivity values of σLAND = 0.001 S/m, 0.1 S/m, 1 S/m.

Figure 5: Path loss vs. range for a 5-section-path propagation scenario at 5 MHz, 15 MHz, and 30MHz.

Figure 6: Path loss vs. range for a 3-section-path propagation scenario at σLAND = 0.001, 0.1, 1 S/m.
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6. Conclusions
The new Matlab-Based, user-friendly HF PATH virtual propagation tool can be used for multi-mixed path

surface wave path loss calculations. Any multi-mixed-path surface wave propagation scenario may be specified
by the user together. The electrical parameters of the propagation segments and the operating frequency are also
user-specified parameters. The effects of multi-mixed paths, electrical parameters of each propagation section,
and the frequency on to the range variation of path loss can be simulated easily. The HF PATH can be used
for both design and training purposes.
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Implementation of Arbitrarily Oriented Wires in 3D-TLM
Method

B. Larbi, J. L. Dubard, and C. Pichot
University of Nice-Sophia Antipolis/CNRS, France

The Transmission Line Matrix method is a well known time domain numerical tool suitable to the analysis
of complex structures in a wide frequency range. In 3D-TLM mesh, the six components of the electromagnetic
field are located at the center of the cell. This allows accurate modelling of boundaries between different media.
In addition, the use of a variable mesh allows the study of complex antenna including fine details with reasonable
computation time and memory storage.

However, the simulation of VLF antennas is difficult to perform since such structures are very large (several
hundred meters) and contain a multitude of arbitrarily-oriented-thin-conductors (diameters of several millime-
ters). Furthermore, a reliable analysis of VLF antenna needs also to consider the soil, the finite ground plane and
the surrounding infrastructures. With such constraints, the use of a non uniform mesh cannot avoid prohibitive
computation time and memory storage. Then, it is necessary to implement an arbitrarily-oriented-thin-wires
model in the 3D-TLM method for this kind of electromagnetic analysis.

The model used in this work allows arbitrarily located and oriented wires with respect to the Cartesian
grid. The Maxwell equations are discretized by a finite differential approximation on a hexahedral mesh. The
wires are described by two equations which symmetrically associate the electrical field and the current along
the wire. Those equations are coupled using the TLM scheme in the same way as done in the FDTD method by
Edelvik [1]. The performance of the arbitrarily-oriented-thin-wire model in TLM is evaluated for a dipole when
comparing theory and the FDTD method. Simulation results for a VLF T-Antenna are provided and compared
with measurements and analytical models.
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An Efficient Band Diagonal Preconditioner for Electromagnetic
Integral Equations Using Wavelet Packet Bases

A. Geranmayeh
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Iterative methods are commonly used to solve large scale moment matrix equations resulting from elec-
tromagnetic integral equations. The computational cost of iterative solutions is proportional to the moment
matrix-vector multiplication operation and the number of iterations required for a convergent solution [1].
The wavelet (packet) basis functions have been deployed to reduce the computational complexity and memory
requirement of dense matrix-vector multiplications operation [2]. The total solution time, however, remains
dependent on the number of iterations required to achieve an accurate solution. In case the moment matrix
is not well conditioned, an approximate-inverse preconditioning matrix is desired to accelerate the convergence
rate of the iterative solution [1].

The use of conventional basis functions results in a dense matrix equation, making it difficult to find an
effective approximate-inverse preconditioner. In order to find an appropriate preconditioner more easily, one
can transform the moment equation to multiresolution wavelet domain so as to make the transformed moment
matrix sparse and diagonal dominant [3, 4]. In most previous studies, the approximate-inverse preconditioner
have been designed and constructed in the space domain from a block-diagonal approximation of the sparsified
moment matrix [3–5]. The significant elements of the transformed moment matrix, however, are located along
the near-diagonal positions, as most offdiagonal entries are negligible due to the vanishing moments of bases
in wavelet domain [2]. As a result, a more efficient preconditioner can be constructed that consists of only the
near-diagonal terms of the transformed matrix.

This paper proposes a band diagonal approximate inverse matrix preconditioning to overcome the complexity
and memory bottlenecks in direct computing the inverse of the original matrix in designing the commonly
used preconditioners. Additionally, in order to minimize computational cost and memory requirements in
preconditioning operation, the multiplication of the preconditioner and the transformed matrix is carried out
in sparse scheme [1]. An electrically large gull-shaped piecewise linear antenna excited by a center-fed voltage
is analyzed to investigate the computation efficiency of the proposed method. The governing thin-wire electric
field integral equation [2] is solved by the wavelet-based moment method to evaluate the current distribution
over the antenna. Numerical results show that the iteration numbers for solving the transformed moment
matrix equation preconditioned in wavelet domain by the proposed band diagonal matrix are smaller than those
preconditioned by the block-diagonal equivalent one designed in space domain [4].
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