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RCS Prediction of Large Cavities on a Distributed Memory
Parallel Computer

J. Boland and J. D’Angelo
General Electric Aircraft Engines, USA

Abstract—This paper describes the implementation and results of a finite element based radar cross section
(RCS) prediction method on a distributed memory parallel computer. This method has been specifically devel-
oped for the analysis of large cavities with model reduction of rotationally periodic and mirrored geometries.
Realistic propulsion system components have been modeled with this method at X-band on shared-memory
parallel computers [1]. This paper describes the extension of this method to distributed memory parallel com-
puters and the inherent communication process required. The paper also discusses timing results and parallel
efficiency.

1. Introduction

Engine system inlet and exhaust ducts are among the most difficult areas to reduce the RCS of a military
aircraft. Methods of predicting the performance of such devices are important to achieving optimal designs in
a timely and cost efficient manner.

For radar frequencies of interest, an engine cavity is considered to be electromagnetically large —where
the physical dimension is much larger than the wavelength. The most widely used methods for modeling large
objects are based on asymptotic techniques such as ray tracing, diffraction theory, and physical optics. However,
for cavity structures in particular, the limited accuracy of asymptotic methods makes them suitable only for
first-order engineering approximations.

Compounding the challenge of modeling the electromagnetic large aspect of a military engine cavity is the
requirement of modeling complex-shaped geometries, such as turbine blades, cooling holes, flame holders, etc.,
and the requirement of modeling radar absorbing materials in both bulk and composite configurations.

GE Aircraft Engines has for a number of years been developing techniques based on the finite element
method (FEM). FEM has shown its robustness in modeling the complex material and geometry configurations
at the accuracy levels necessary for low observable designs. Methods presented previously [1] and reviewed
here, incorporate the use of special transforms for model reduction of the rotationally periodic engine geometry.
These transforms, coupled with the use of specialized sparse matrix solution techniques, have allowed our FEM
to model cavities at the higher frequencies of interest.

Results presented previously were performed on parallel computers utilizing a shared memory facility. These
computers are limited to a relatively low number of processors that can be efficiently run in parallel (approx-
imately ten processors). To extend this, the present computer architecture of choice is a distributed memory
system where processors maintain their own computer memory and information is passed between them by a
message passing system. Preliminary results in using this type of parallel computer for our FEM approach are
described here.

2. Formulation

2.1. Basics

The mathematical frequency domain finite element formulation used here is of a standard type using a
curl-curl type wave equation for the electric field:

1
VX —VXE+jweE =0 (1)
jwp

A dual formulation for the magnetic field could also be utilized, however, because resistive sheets would have
to be “gapped” [2] in the magnetic field formulation, the electric field formulation is preferred for not having
this cumbersome modeling step.

Standard types of finite elements, with hexahedron, wedge, and tetrahedral shapes are used (Fig. 1). The
order of the edge-type element basis function used is commonly referred as H1 type—where the field behavior
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Figure 1: Edge element tetrahedral, wedge, and hexahedral shapes.

is modeled as linear along the edge direction and quadratic in the orthogonal direction. The element types used
here are also curvilinear in construction for better modeling of curved surfaces.

Applying the Galerkin weighted residual method to Eq. 1 results in a sparse set of matrix equations, A, with
a forcing function, b, representing the incident electromagnetic field, the field solution at each finite element
unknown is represented by the vector z in Eq. 2.

Az =b (2)

For geometries of interest and for discretization levels of four elements per wavelength or better, this sparse
matrix may result in the tens of millions of unknowns for the higher frequencies of interest. However, methods
can be employed to reduce the model for solution in a timely manner on a not-so massive parallel computer.
For rotationally periodic structures such as the engine front frame shown in Fig. 2(a), the resulting matrix
would have a repeatable block pattern, as shown in Fig. 2(b). This matrix type is known as a block circulant
matrix [3].

Figure 2: (a) Engine front frame. Figure 2: (b) Matrix with repeating block structure.

The number of blocks in a row/column of the matrix in Fig. 2(b) corresponds to the number of periodic
structures “p” within the device. Also, the order of the block would be equal to the number of finite element
unknowns one periodic “pie slice” volume of the structure —see Fig. 3(a).

The repeated pattern matrix of Fig. 2(b) can be reduced to a block diagonal matrix, as shown in Fig. 3(b),
by applying a discrete body of revolution Fourier transform [4]. This transform can be represented by matrices

P and P~! that left and right multiplies the system matrix A of Eq. 2, respectively:
PAP™'Px = Pb (3)

Although this discrete Fourier transform is for rotationally symmetric structures, similar transforms have
been constructed for geometries with mirror plane symmetries.

This block diagonal form has multiple advantages over solving the overall system as in Fig. 2(b). First,
each block can be solved independently and in parallel simultaneously. Next, it dramatically reduces the
“bandwidth” of a sparse matrix factorization scheme leading to a geometric decrease in the number of floating
point operations. And lastly, the total solution is reconstructed from these independent sets without loss of
accuracy.
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Figure 3: (a) Finite element model of one periodic section. Figure 3: (b) Block diagonal matrix.

However, for the size of problems required for realistic propulsion systems, the individuals block themselves
must also be solved in parallel. The necessity of this is two-fold: first the speed increase of parallel system is
required to incorporate the analysis into a timely design iteration process, and second, the computer memory
requirements of a block would exceed an individual processor and must be spread over multiple nodes of a
parallel system.

2.2. Parallel Matrix Solution

A matrix factorization method is used that takes advantage of the aperture nature of this cavity problem.
This solution method is similar to the one presented in [5] and is applied in both parallel and serial versions
of the analysis code. This matrix factorization method takes advantage that the forcing function of the system
is applied only to the front surface aperture of the cavity. Also, the calculation of the RCS requires the field
solution only over this same aperture surface.

Factorization schemes, by themselves, are attractive over alternative iterative schemes because of the need
to solve for multiple look-angles and polarizations. The total sum of these solutions, and again in particular
for higher frequency problems where the RCS vs. look-angle curves may have high scintillation patterns, may
order into the one-thousand or better range.

This frontal-factorization scheme takes advantage of the cavity/aperture geometry by factoring from the
opposite end of the cavity (opposite from the aperture surface) to the aperture surface in a wave-front fashion.
Because back-substitution is only required over the aperture surface to calculate RCS, the memory for the
factored matrix behind the “wave-front” is released and reused. This keeps the total memory requirement to a
minimal amount. Also, the order for the number of floating point operations is equal to

O(N, Ne) (4)

where N,, is equal to the number of unknowns in the wave-front and Ny is the number of unknown along the
length of the cavity. As seen from Eq. 4, the reduction of N,, by the periodic decomposition scheme by a factor
of 1/p where p is the number of periods, drastically reduces the total number of floating point operations.

For serial computers or parallel computers with shared memory architectures, this “wave-front” banded
factorization scheme is a straightforward procedure. For distributed memory cluster computers, the algorithm
is somewhat challenging to construct and implement with efficient parallelism. In our method, a block method of
factorization [6] with a skyline profile is used. Here, the individual factorization blocks are assigned to separate
processors on the cluster computer. Data communication between processors is performed with the Message
Passing Interface (MPI) library.

3. Results

The computer used for the following two example problems is a Dell 2850 cluster. Each node of this computer
consists of dual Intel Xeon™ processors running at 2.8 GHz (512 kilobyte cache) with 4 gigabytes of memory.
The operating system is Red Hat Linux 9.0, Intel Fortran and C compilers were used, and the message-passing
library implementation is LAM MPI.

The first example is a test body representative geometry of an exhaust duct (see Fig. 4). This test geometry
has a length of 35inches, a diameter of 38inches, and has a rotational periodicity of 16. The geometry was
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meshed for a frequency of 10 GHz. This mesh has a mixture of hexahedral and wedge shaped elements. The
total number of cubic wavelengths of the cavity without model reduction is approximately 24000. The number of
finite element unknowns generated from the model-reduced mesh is approximately 1.57 million and the number
of non-zeros in the resulting matrix is 129.2 million. The total amount of memory used across all processors is
approximately 2.2 gigabytes.

Figure 4: Example exhaust duct test case.

This problem was run with a modest number of processors so that all harmonics of the discrete Fourier
decomposition could be run simultaneously on a cluster numbering less than twenty-five nodes.

Runs with two and three nodes (four and six processors, respectively) were performed. The timings for
matrix factorization are: approximately 25 hours for two-nodes and 23 hours for three-nodes. The total number
of floating point operations for the factorization is 332 x 10'2 and the floating point rate is 0.925 gigaflops per
processor (3.7 Gigaflops total) for the two node case and 0.671 gigaflops per processor (4.03 gigaflops total) for
the three node case. The parallel efficiency for the two-code case is 66 percent and the three-node case is 50
percent. 1644 solutions (822 look-angles with both polarizations) were solved for; the total solution and RCS
integration times were 516 seconds for two nodes and 504 seconds for three nodes.

The second example is another exhaust duct of greater internal geometric complexity and slightly larger in
size. The approximate length and diameter are 40inches and 38inches, respectively. It also has a rotational
periodicity of 16 but includes more internal structures that lead to a higher floating-point operation count. A
frequency of 10 GHz is used and the total number of cubic wavelengths without model reduction is approximately
27500.

The total number of finite element unknowns is approximately 2.5 million after model reduction (hexahedral
and wedge shaped elements were again used) and the number of non-zeros in the matrix is 203.5 million. The
total number of unknowns on the reduced model aperture surface is 8936.

The matrix factorization time is approximately 72 hours on five processors. The total number of floating
point operations for this factorization is 1.2 x 10'°, which results in a rate of 0.94 gigaflops per processor
(4.7 gigaflops total). The total amount of memory across the five processors is approximately 6.0 gigabytes for
the wave-front factorization. The parallel efficiency is estimated at 68 percent.

4. Conclusions

This paper demonstrated the application of finite element analysis with the combination of model reduction
by rotational decomposition and the use of distributed memory parallel computers. The results presented
here are our first attempt at using a distributed memory parallel computer for this analysis method. The
authors believe that further parallel efficiencies can be obtained with added effort on methods of parallel matrix
factorization.

REFERENCES

1. Boland, J. and J. D’Angelo, “Finite element methods for rcs cavity analysis,” 2003 FElectromagnetic Code
Consortium, Hampton, Va., (SECRET), May 2003.



438

Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

D’Angelo., J. and C. Baucke, “Modeling resistive strips with finite elements for TE polarization,” IFEE
Transactions on Antennas and Propagation, Vol. 40, Issue 10, 1266-1269, Oct. 1992.

Golub, G. H. and C. F. Van Loan, Matriz Computations, Johns Hopkins University Press, New York, 1996.
Sharpe, R. M., “Electromagnetic scattering and radiation by discrete bodies of revolution,” Master’s Thesis,
University of Houston, (advisor: Professor Donald Wilton).

Jin, J-M., J. Liu, Z. Lou, and C. S. T. Liang, “A fully high-order finite-element simulation of scattering by
deep cavities,” IEEE Transactions on Antennas and Propagation, Vol. 51, Issue 9, 24202429, Sep. 2003.
Duff, I. S.; A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford University Press,
1992.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 439

An Efficient hp Adaptive Finite Element Solver for
Time-harmonic Electromagnetic Fields

V. Hill, O. Farle, P. Ingelstrom, P. Nickel, and R. Dyczij-Edlinger
Saarland University, Germany

Thanks to its great flexibility in modelling geometry and material properties, the finite element (FE) method
is a widely used tool for the numerical analysis of electromagnetic devices. With the FE method, there are two
different ways of improving the accuracy of numerical solutions. In case of p enrichment, the degrees of the basis
functions are increased whereas, in case of h refinement, the element sizes are decreased. When the fields are
smooth, p enrichment yields exponential convergence, whereas h refinement is always limited to algebraic rates
of convergence. On the other hand, when singularities are present, the performance of p schemes is poor whereas
nonuniform h methods succeed in keeping the rate of convergence unchanged. Since real world configurations
typically involve both regions of smooth fields and localized areas of rapid field variations or even singularities,
p enrichment and h refinement should be viewed as complementary rather than competing techniques.

The FE method we propose in this paper combines hp adaptivity with fast solution techniques. As for h
refinement, we construct sequences of nested tetrahedral meshes which allow for subregions of greatly varying
refinement levels, and impose special restriction operators to make the FE basis functions maintain proper
continuity conditions. The resulting FE spaces are perfectly nested, which makes them very well-suited for
advanced geometrical multi-grid solvers exploiting local sub-meshing techniques.

Regarding p enrichment, a set of hierarchical H(curl) conforming basis functions developed by one of the
authors is employed. It is of the incomplete order type, features explicit basis functions for higher order
gradients as well as increased sparsity within the stiffness matrix, and possesses interpolation properties that
greatly simplify h refinement and hence bridge the gap to the before mentioned method. Our basic building
block for a fast solver in the p domain is a multiplicative Schwarz method.

One challenge with hp schemes is that the aspects of multi-grid schemes for h refinement and Schwarz
methods for p enhancement can no longer be considered separately. In fact, there are many ways to cycle back
and forth between a low-order FE space over a coarse mesh and a high-order space over a fine discretization,
and it turns out that the corresponding algorithms differ greatly in their computational complexity.

In our talk we will give the details of the proposed hp adaptive FE solver. We will demonstrate the efficiency
of the new approach by a number of numerical examples.
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Challenges for Computational Electromagnetics for Low
Frequencies

W. C. Chew!, M. K. Li!, Y. A. Liu!, Z. G. Qian'
J. Xiong!, L. Sun!, I. T. Chiang!, L. J. Jiang?, and Y. H. Chu?

!University of Illinois, USA
2IBM TJ Watson Research Center, USA
3 Agilent Technologies, USA

Full wave electromagnetic simulation of circuits in computer technology is a challenging problem, as it is
in the domain where wave physics meets circuit physics, namely, it is the “twilight zone”. In this regime,
electromagnetic field does not behave fully as waves, but meanwhile, simple circuit theory such as KCL and
KVL cannot fully capture the physics of the electromagnetic interaction. In this regime, two kinds of breakdown
occur for computational electromagnetics: the low-frequency breakdown due to the inaccuracy in the integral
equation, and the low-frequency breakdown in accelerators such as the fast multipole algorithm.

When the size of a geometry structure is much smaller than a wavelength, it is necessary to use a quasi-
Helmholtz decomposition of the surface current to preclude the breakdown of the integral equation. Such a
decomposition is achieved by using either the loop-tree basis or the loop-star basis for the quasi-Helmholtz de-
composition. In this manner, the physics that corresponds the world of the capacitors, and that that corresponds
to the world of the inductors can be correctly captured.

When the size of the geometry structure is comparable to wavelength, Rao-Wilton-Glisson (RWG) functions
can be used to expand the current on the structure to capture the wave physics. Low-frequency breakdown
problem can be delayed by using higher precision calculations when RWG functions are used.

As for the solution accelerator, we have recently proposed the mixed-form fast multipole algorithm that
can work seamlessly from static to the microwave regime. It is both accurate and error controllable, as well
as being memory efficient. However, there exist structures where both wave physics and circuit physics are
important. This could be a large structure with many excruciating details as happens in a computer circuit,
but the overall platform size is not small. In that case, it is more expedient to put Huygens’ equivalence boxes
around each region with fine details, and decouple the exterior problem from the interior problem. This can be
regarded as having replaced a region with fine details with an N-port representation. Inside the Huygens’ boxes,
low-frequency techniques can be used to solve the problem so that low-frequency physics is correctly captured,
with the ensuing geometry details. Outside the Huygens’ boxes, when wave-like interactions are computed, less
number of unknowns is needed to capture the wave physics, but meanwhile, the ability to model fine details is
not foregone.
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Multi-level Multiplicative Schwarz Preconditioner for Solving
Matrix Equations from DD-FE-BEM Formulation

K. Z. Zhao and J.-F. Lee
The Ohio State University, USA

A symmetric coupling between finite and boundary elements for solving electromagnetic wave radiation
and scattering problems in R? has been recently proposed by Vouvakis et al., [1]. The new formulation results
in a symmetric complex matrix equation which is free of internal resonances, and the spectral radius of the
couplings between finite and boundary elements is bounded by 1. Moreover, the formulation is also allowing
non-conformal couplings between FEM and BEM, and thus, offers great modeling versatility for solving real-life
complex problems. By non-conformity, we mean that the surface triangulations of the FEM and the BEM do
not need to be the same, as well as the flexibility of choosing different order of basis functions for FEM and
BEM portions separately.

This paper addresses the practical issue of how to solve the resulting symmetric complex matrix equations
efficiently. As is well known that in order to solve large sparse matrix equations (or even dense matrix equations,
for that matter) efficiently using iterative solution, such as Conjugate Gradient (CG) methods, the most critical
ingredient is the preconditioner. In the authors’ group, we have developed over the years a robust preconditioner,
termed p-MUS (p-type MUTItiplicative Schwarz), for preconditioning the matrix equations from the application
of the vector finite elements [2]. We extend the p-MUS to the current DD-FE-BEM formulation, and treating
the BEM block as another “abstract” domain, and construct three possible preconditioners: an inner-outer loop
domain decomposition preconditioner, an additive p-type Schwarz method, and a Multi-level MUItiplicative
Schwarz (M-MUS) preconditioner for solving the resulting DD-FE-BEM matrix equations. Various numerical
examples, including both radiation and scattering problems, will be presented and comparisons of the three
preconditioners will be discussed as well in the presentation.
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Higher Order Hierarchical FEM Solutions with Enhanced
Efficiency and Practicality

B. M. Notaros, M. M. Ili¢, and A. Z. Ilié
University of Massachusetts Dartmouth, USA

Recently, computational techniques based on using electrically large curved elements for geometrical model-
ing (large domains) and higher order basis functions for field modeling have been employed within the framework
of the finite element method (FEM), with an objective to significantly reduce the number of unknowns and com-
putational resources for a given (high) accuracy when compared to low-order small-domain solutions. However,
these advantages become evident and convincing only if the large-domain FEM approach is carefully planned
and implemented. This paper addresses several numerical aspects of the higher order implementation and
presents some new advancements in the context of hierarchical curl-conforming polynomial vector basis func-
tions on generalized hexahedral finite elements [1], which are all crucial for making this approach an efficient
and practical analysis and design tool for engineers.

Hierarchical curl-conforming vector basis functions enable using different orders of field approximation in
different elements for efficient selective discretization of the solution domain. We demonstrate very effective
higher order FEM models of complex structures consisting of both very large and very small elements of very
different shapes. We also discuss some of the algorithms for the higher order hexahedral mesh generation.
Although hierarchical polynomials are inherently ideal for p-refinement of solutions, for general structures it
must be combined with an A-refinement. We show excellent convergence properties for several hp-refined meshes
and discuss possible further improvements of the technique.

Hierarchical basis functions generally have poor orthogonality properties, which results in FEM matrices
with large condition numbers. The ill-conditioning is principally caused by a strong mutual coupling between
the pairs of higher-order functions defined on the same (electrically large) generalized hexahedron, which become
increasingly similar to one another as the polynomial degrees increase. In order to reduce this coupling, basis
functions with better orthogonality properties have to be utilized. We show that higher order large-domain
hierarchical curl-conforming FEM vector basis functions constructed from standard orthogonal polynomials and
their modifications on generalized curvilinear hexahedral elements exhibit a very slow increase of the condition
number of the FEM matrix with increasing the field-approximation orders and a very dramatic reduction of the
condition number for high orders as compared to the technique in [1] using field expansions based on simple
power functions (the reduction is as large as fourteen orders of magnitude in some cases).

To ensure that the CPU time per unknown in higher order solutions is comparable to that in low-order
solutions, rapid and accurate recursive procedures are needed for evaluation of elements of FEM matrices.
We show how important for the efficiency of the solution is that computation algorithms avoid redundant
operations related to the indices for basis and testing functions and for geometrical representations within all
of the interactions in the FEM solution, as well as the summation indices in the Gauss-Legendre integration
formulas. In addition, it is crucial that the topological analysis of the problem and assembly of the connectivity
matrix are also done in an optimal way that minimizes the total number of nonzero elements and ensures a
similar level of sparsity of system matrices as for low-order solutions.
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Combining an FEM Domain Decomposition Method with BEM
for Accurate Antenna Array Analysis

M. N. Vouvakis!, S.-C. Lee?, K. Z. Zhao?, S. M. Seo?, and J.-F. Lee?

!University of Massachusetts-Amherst, USA
2The Ohio State University, USA

Finite Element Method-Domain Decomposition (FEM-DD) methods have been proven very efficient and
effective numerical techniques for the analysis of Maxwell’s equations. Among other advantages, it suffice
to stress their parallelization ability, ability to systematically couple different numerical methods into hybrid
schemes, efficient exploitation of geometrical redundancies and symmetries, and relaxing meshing and adaptive
meshing strategies. On the other hand, in light of the resent fast Integral Equation developments, see for
example MLFMA, AIM, P-FFT, etc. Boundary Element Methods (BEM) are best suited for the fast analysis
of unbounded problems.

This paper attempts to modularly couple the two approaches. The result is a very robust, accurate and
efficient method for unbounded electromagnetic problem analysis. The method is extremely efficient when
repeating structures are involved in the computational domain. The FEM-DD is coupled with BEM using
DD concepts. In other words, the FEM-DD and BEM are viewed as another domain level in the domain
decomposition. In overall this is a 2-level DD, where the inner level of the DD is the FEM-DD whereas the
outer level DD is the coupled FEM-DD and BEM problem. The method is non-conforming thus it allows for
maximum exploitation of geometry repetitions, local adaptation schemes and efficient structured BEM solvers.
The overall method is variational and free of internal resonances. Various solutions strategies will be proposed.

New results of the coupled FEM-DD and BEM will be given. Comparisons with other methods, convergence
curves and computational statistics will be presented in order to demonstrate the accuracy, efficiency and
versatility of the method. Some results on real-world challenging radiation and scattering problems such as very
large antenna arrays, hybrid radomes and EBGs will be presented.
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