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Phase Fluctuations in Scattered Radiation

S. M. Watson
University of Central Florida, USA

K. D. Ridley
QinetiQ, UK

Fluctuations in scattered radiation are of considerable practical and theoretical interest [1]. Perhaps due to
the prevalence of direct detection systems at optical wavelengths, as well as the relative difficulties encountered
in phase sensitive systems, phase statistics and correlations would appear to have received considerably less
attention than corresponding results for intensity. Freund and Kessler obtained the phase autocorrelation of
a complex Gaussian field from the two-point joint density [2], a calculation that Middleton had performed in
earlier investigations [3]. As noted by Sebbah et al., [4], the results from these investigations are applicable
to the wrapped phase, or phase modulo 2π, and not the unwrapped phase that can take on arbitrary values.
However, there are instances when the variance of the unwrapped or cumulative phase is of most interest,
such as characterizing transit times in diffuse waves [5], wavefront sensing and interferometry [6]. In this talk
we present unwrapped or cumulative phase results following scattering from one-dimensional phase screens and
extended random media. Analytical results are obtained in weak and strong fluctuations regimes, which provide
a benchmark for numerical simulations that allow insight under all fluctuation conditions.
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Scattering of an Electromagnetic Wave from 3-dimensional Rough
Layers: Small-amplitude Method and Small-slope Approximation

G. Berginc
Thales Optronique S. A., France

C. Bourrely
Centre de Physique Thérique, France

The scattering of electromagnetic waves from randomly rough surfaces have been extensively studied in
different domains such as radio-physics, geophysical remote sensing, ocean acoustics, surface optics and recently
plasmonics where metallic surfaces have a dielectric coating. Our purpose is to show how light can interact with
several randomly rough surfaces. In this paper, we consider an electromagnetic polarized plane wave incident
on a three-dimensional dielectric film with one or two randomly rough surfaces. We assume that the randomly
rough surfaces are Gaussian and statistically independent: a Gaussian probability density function is assumed
for the random rough surface heights and the autocorrelation function is a Gaussian function. We study two
hypothesis, we consider three-dimensional structures bounded by two-dimensional weakly rough surfaces or by
two-dimensional randomly rough surfaces with small-slope.

In the case of weakly randomly rough interfaces, we use the small-amplitude perturbation theory, we have
generalized the integral equations called reduced Rayleigh equations in the case of a three-dimensional layer
with weakly randomly rough interfaces. The electromagnetic polarized plane wave is incident on a dielectric
layer whose mean thickness is constant. The dielectric layer is deposited on a metallic film. Illustrative examples
are presented for the bistatic diffuse component of the electromagnetic field.

In the second part of the paper, we discuss the extension of the theory using the small-slope approximation
method. We study structures with two-dimensional randomly rough surfaces, including scattering from free-
standing films or films on a substrate, one or both of whose surfaces are randomly rough. The fourth order term
of the perturbative development is required if we want to take into account the interactions between the two
randomly rough surface. Some simulations will be given and compared with the small-amplitude perturbation
method.

This analysis is relevant to problems of laser cross-section calculation, remote sensing of irregular layered
structures and remote detection of chemical coatings.
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Fast Modeling of Reflectance Image of Turbid Medium with
Full-field Illumination

C. Chen, R. S. Brock, D. W. Pravica, X.-H. Hu, and J. Q. Lu
East Carolina University, USA

Reflectance imaging with oblique full-field illumination is a powerful tool for non-invasive determination
of internal structure of turbid materials and diagnosis of lesions in human tissues. Extraction of structural
information from the reflectance imaging data, however, requires quantitative modeling of light transportation
and distribution in the turbid medium. Radiative transfer theory offers an accurate model and often has to be
realized through Monte Carlo simulations, which is time consuming due to its statistical nature. In contrast,
the diffusion approximation to the radiative transfer theory can be solved analytically but only applicable to
the distribution of multiply scattered photons.

Based on previous studies of radial distribution of reflected light with single-fiber illumination [1–3], we
compared different hybrid models that combine the Monte Carlo simulation with calculations based on the
diffusion approximation of radiative transfer theory. On the basis of these results, we investigated a hybrid
model that is most appropriate for full field illumination in which photon tracking in the Monte Carlo simulation
is truncated to significantly increase the calculation speed. The contribution to the reflected light distribution
at the surface of the imaged medium by the truncated photons is obtained from the analytical solution of the
diffusion equation for these multiply scattered photons. We will present the numerical results on the validity
and applicability of this fast hybrid method for modeling reflectance images with fullfield illumination and its
potential use in the inverse determination of internal stricture in turbid medium.
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Optical Tomography of Arbitrarily Shaped Object with
Randomly Rough Boundaries

G. Berginc and M. Jouffroy
Thales, France

This paper presents the results of research designed to fulfill two main objectives including development of
laser reflectance modeling of complex convex or concave objects with randomly rough boundaries and investi-
gation of tomographic reconstruction of these objects.

This paper addresses the utility of physics based modeling of the laser backscattering of complex rough
targets. The physics based model, we present in this paper, is designed to provide accurate results but to also
include all of the electromagnetic interaction mechanisms. To model the laser interaction with the randomly
rough surface, we use the second order Small-slope Approximation method. Because the problem, we consider
in this paper, is three-dimensional, all the scattering coefficients (coherent and incoherent component of the
electromagnetic field) are functions of the azimuth angles, and the cross-polarized terms do not vanish. We
define, in this case, the Mueller matrix, which gives all the combinations of the polarization states of the
scattered electromagnetic waves. The randomly rough surfaces of the complex object are characterized by
electromagnetic parameters (permittivity. . .) and roughness parameters (standard deviation of rough surface
height and autocorrelation function). One of the great advantages of this physics based model is its extensibility.
Electromagnetic interactions of higher levels of complexity can be added to the model. Illustrative examples
are presented for laser scattering from large convex objects. Our model addresses also transparent structures.
With this model, we can obtain high temporal resolved laser backscattering from complex objects.

In the second part of the paper, we investigate algorithms for tomographic reconstruction of complex objects.
The reconstruction is based on compilations of time-resolved optical backscattering obtained at various angles.
The laser backscattered energy at various angles is calculated by our reflectance modeling of complex objects.
We use our model to generate sets of data, with which we can compare the different models of reconstruction. We
compare direct back-projection method, filtered back-projection method, Fourier-Radon method and stochastic
method. We analyze the stability of the different methods when we add noise to the laser backscattering.
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Statistical Distribution of Field Scattered by 1-Dimensional
Random Slightly Rough Surfaces

R. Dusséaux and R. de Oliveira
Université de Versailles Saint-Quentin en Yvelines, France

Abstract—We consider a perfectly conducting plane with a local cylindrical perturbation illuminated by a
monochromatic plane wave. The perturbation is represented by a random function assuming values with a
Gaussian probability density. For each realization of the stochastic process, the spatial average value over
the width of the modulated zone is zero. The mean value of the random function is also zero. Without any
deformation, the total field is the sum of the incident field and the reflected field. For a locally deformed plane,
we consider — in addition to the incident and reflected plane waves — a scattered field. Outside the modulated
zone, the scattered field can be represented by a superposition of a continuous spectrum of outgoing plane
waves. The method of stationary phase leads to the asymptotic field, the dependence angular of which is given
by the scattering amplitudes of the propagating plane waves. Using the first-order small perturbation method,
we show that the real part and the imaginary part of scattering amplitudes are uncorrelated Gaussian stochastic
variables with zero mean values and unequal variances. Consequently, the probability density for the amplitude
is given by the Hoyt distribution and the phase is not uniformly distributed between 0 and 2π.

1. Introduction
The problem of electromagnetic wave scattering from random surfaces continues to attract research interest

because of its broad applications. The three classical analytical methods commonly used in random rough-
surface scattering are the small-perturbation method, the Kirchhoff method and the small slope approximation
[1–5]. The electromagnetic analysis of rough surfaces with parameters close to the incident wavelength requires
a rigorous formalism. Numerous method based on Monte Carlo simulations are available for 1D and 2D random
rough surfaces [6, 7]. Most of research works focus on the determination of coherent and incoherent intensities.
There is not such a voluminous literature on the statistical distribution of scattered field [3]. In this paper,
we derive the statistical distribution in the far field zone from the first-order small perturbation method in the
particular case of perfectly conducting 1D random rough surface illuminated by an E// polarized monochromatic
plane wave.

2. The Random Surfaces under Consideration
The geometry of the problem is depicted in Fig. 1. The rough surface is represented in Cartesian coordinates

by the equation y = a0(x) and consists of a small cylindrical random perturbation with length L and zero mean

Figure 1: The slightly rough surface.

(< a0(x) >= 0) in a perfectly conducting plane y = 0. Each realisation can be described by the following
equation

a0(x) = a(x)−m if |x| ≤ L

2
a0(x) = 0 outside (1)

where

m =
1
L

∫ +L/2

−L/2

a(x)dx (2)
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a(x) is a random function assuming values distributed normally with zero mean and variance σ2
a. Here it’s

important to distinguish the spatial average m from the statistical mean < a(x) >. Insofar < a(x) >= 0, we
have < m >= 0. The random process is assumed stationary with a Gaussian statistical correlation function

Raa(x) = σ2
a exp

(
− x2

l2c

)
(3)

where lc is the correlation length.

3. The Scattering Amplitudes in the Far Field Zone
The surface is illuminated under incidence θi by an z-polarized monochromatic plane wave Ei

−→u z of wave-
length λ. The Oz-electric component of field is

Ei(x, y) = exp(−jαix + jβiy) (4)

where
αi = k sin θi ; βi = k cos θi ; k = 2π/λ (5)

The time-dependence factor exp(jωt) where ω is the angular frequency is assumed and suppressed throughout.
The total electric field above the rough surface is the sum of the incident field Ei, the field reflected Er by the
plane without deformation (an infinite perfect mirror) and the scattered field Ed.

Et(x, y) = Ei(x, y) + Er(x, y) + Ed(x, y) (6)

where
Er(x, y) = − exp(−jαix− jβiy) (7)

Above the highest point on the surface, the scattered field can be represented by a superposition of a continuous
spectrum of outgoing plane waves, the so-called Rayleigh integral [5].

Ed(x, y) =
1
2π

+∞∫

−∞
Ĉ(α) exp

(− jβ(α)y
)
exp(−jαx)dα (8)

with
β =

√
k2 − α2, Imβ < 0 (9)

In the far-field zone, the Rayleigh integral is reduced to the only contribution of the propagating waves (α ≤ k).
The method of stationary phase leads to the asymptotic field [8]

Ed(r, θ) ≈
√

k

2πr
Ĉ(k sin θ) cos θ exp(−jkr) exp

(
j
π

4

)
(10)

The angular dependence in the far field zone is given by the function Ĉ(α) cos θ and becomes identified with
the propagating wave amplitudes of the continuous spectrum (8) with α = k sin θ [9, 10]. Let us recall that the
normalized bistatic scattering coefficient σ(θ) is defined by the power scattered per unit angle dθ normalized
with respect to the flux of incident power through the modulated region

σ(θ) =
1
Pi

dPd

dθ
=
|Ĉ(k sin θ)|2 cos2 θ

λL cos θi
(11)

For a random process, the scattered field is a random function of position (r, θ) but the scattering amplitude
Ĉ(α) is a random function of the observation angle θ only [10]. The scattering amplitude can be written as the
sum of an average amplitude < Ĉ(α) > which gives the coherent far-field from (11) and a fluctuating amplitude
which leads to the incoherent far-field. The first order small perturbation method applied to the Rayleigh
integral (8) and the Dirichlet boundary condition gives an approximation of the scattering amplitudes [1, 2]

Ĉ(α) = −2jβi

+L/2∫

−L/2

a0(x) exp
(

+ j(α− αi)x
)
dx (12)
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Making a change of variable γ = α−αi, real part Ĉr(α) and imaginary part Ĉi(α) of scattering amplitudes can
be expressed as

Ĉr(γ) = +2βi

+L/2∫

−L/2

a(x) sin(γ x)dx (13)

Ĉi(γ) = −2βi

( +L/2∫

−L/2

a(x) cos(γ x)dx−mL sin c(γ L/2)
)

(14)

where sin c(x) = sin x/x. It can be noticed that the scattering amplitude is zero in the specular direction γ = 0.
Ĉr and Ĉi are obtained from mathematical linear operations applied to the Gaussian random function a(x).
Consequently, Ĉr and Ĉi are also quantities distributed with Gaussian probability densities.

4. The Statistical Distribution of Scattering Amplitudes

4.1. The Incoherent Intensity
From (13) and (14), we derive < Ĉ(γ) >= 0. Consequently, the coherent density is zero. Moreover, after

some extensive mathematical manipulations, we deduce the variances

r =< Ĉ2
r > = 4β2

i

+L∫

0

(L− x)
[
cos γx− sin c

(
γ(L− x)

)]
Raa(x)dx (15)

s =< Ĉ2
i > = 4β2

i

+L∫

0

(L− x)
[
cos γx + sin c

(
γ(L− x)

)]
Raa(x)dx− 4β2

i sin c(γ L/2)

[
sin c(γ L/2)

+L∫

0

xRaa(x)dx + 2

+L∫

0

(L/2− x) sin c
(
γ(L/2− x)

)
Raa(x)dx

]
(16)

where the statistical correlation function Raa(x) is given by (3).
The variances depend on the width L of the modulated zone. But, outside the specular reflection zone, if L

goes to infinity, the variances of the real and imaginary parts become identified. Using (11), (15) and (16), we
obtain the incoherent intensity If (θ) =< σ(θ) >

If (θ) =
<

∣∣Ĉ(k sin θ − k sin θi)
∣∣2 > cos2 θ

λL cos θi
with <

∣∣Ĉ(γ)
∣∣2 >=< Ĉ2

r > + < Ĉ2
i > (17)

We note that the incoherent intensity is not proportional to the surface power spectrum.
4.2. Probability Densities of the Amplitude and Phase

Random quantities A = Ĉr(α) and B = Ĉi(α) are distributed normally with zero mean values and unequal
variances r and s. Moreover, we show that they are uncorrelated. Consequently, they are independent and we
can write:

pAB(a, b) = pA(a)pB(b) =
1

2π
√

rs
exp

(
− a2

2r
− b2

2s

)
(18)

where pAB(a, b) is the two-dimensional normal distribution of Ĉr(α) and Ĉi(α). Transforming to polar coordi-
nates,

A = M cos ψ ; B = M sin ψ (19)

we obtain the required distributions for the modulus M and the phase ψ:

pM (m) =

2π∫

0

pMψ(m,ϕ)mdϕ =
m√
rs

exp
(
− m2

4r
− m2

4s

)
(20)

pψ(ϕ) =

+∞∫

0

pMψ(m, ϕ)m dm =
1
2π

√
rs

s cos2 ϕ + r sin2 ϕ
(21)
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These formulas show that pM (m) is the Hoyt distribution [3] and that the phase is not uniformly distributed
between 0 and 2π. Nevertheless, outside the specular reflection zone and if L goes to infinity, pM (m) is reduced
to the Rayleigh distribution and the phase is uniformly distributed.

5. Results
Figure 2 gives the incoherent intensity for a Gaussian random profile having a modulation length L = 24λ,

a rms height h = 3λ/100 and a correlation length lc = 2λ. We can note the zero value of If (θ) in the specular
direction (θ = θi = 30◦). Outside the specular zone, the comparison with results obtained by the C method [10]
is good. The dashed curve and the solid curve show the values obtained by (15) and by the C method.

Figure 2: Incoherent intensity for a Gaussian random profile.

Figure 3: Amplitude and phase distributions.

Figure 3 show the values of the Hoyst distribution and the phase distribution (given by (20) and (21),
respectively) for an observation angle θ = 10◦. The comparison with the normalized histogram obtained by a
Monte-Carlo simulation with 10000 surface realizations is good.

6. Conclusion
We have derived the statistical distribution in the far field zone from the first-order small perturbation

method in the particular case of perfectly conducting 1D random rough surfaces illuminated by an E// polarized
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monochromatic plane wave. We have shown that the real part and the imaginary part of scattering amplitudes
are uncorrelated Gaussian stochastic variables with zero mean values and unequal variances. The probability
density for the amplitude is given by the Hoyt distribution and the phase is not uniformly distributed between
0 and 2π. Comparisons with statistical observation over 10000 surfaces confirm the result. This approach
can be extended to dielectric random rough surfaces illuminated by a polarized plane wave E// or H//. The
generalization of these results to slightly rough surface with an arbitrary statistical height distribution with an
arbitrary correlation function is in progress.
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Experimental and Theoretical Studies of Specular and Diffuse
Scattering of Light from Randomly Rough Metal Surfaces

E. I. Chaikina, E. R. Méndez, and A. G. Navarette Alcalá
Centro de Investigación y de Educación Superior de Ensenada, México

A. A. Maradudin and T. A. Leskova
University of California, USA

We present experimental results for the reflectivity of two-dimensional randomly rough metal surfaces, as
well as the contribution to the mean differential reflection coefficient from the light scattered incoherently by
such surfaces. The measurements were done with s- and p-polarized light. The samples were fabricated on
photoresist and coated with gold. Their surface profiles constitute good approximations to Gaussian random
processes with a Gaussian surface height autocorrelation function. The measurements were done in the infrared
at a wavelength of 10.6µm. The experimental results for the reflectivity are compared with the results of
small-amplitude perturbation theory, phase perturbation theory, and self-energy perturbation theory, and with
results obtained on the basis of the Kirchhoff approximation. Rough surfaces with rms heights a small fraction
of the wavelength of the incident light were employed, so that meaningful comparisons with the results of the
perturbation theories could be made. In the case of the light scattered incoherently, the experimental results are
compared with results obtained by means of the Kirchhoff approximation and with the results of small-amplitude
perturbation theory and phase perturbation theory. The theoretical results for the reflectivity obtained on the
basis of phase perturbation theory are closest to all the experimental results in both s and p polarization. Phase
perturbation theory also produces the best overall agreement with the experimental results for the contribution
to the mean differential reflection coefficient from the incoherent component of the scattered light for in-plane,
co-polarized scattering, although small-amplitude perturbation theory produces better results in p polarization
for samples with very small transverse correlation lengths of the surface roughness.
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