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Spain); E. R. Méndez (División de F́ısica Aplicada, México); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

The Local Density of States in Finite Size Photonic Structures, Small Particles Approach

V. Prosentsov (University of Twente, The Netherlands); A. Lagendijk (FOM-Institute for Atomic and
Molecular Physics, The Netherlands); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Spatial Wave Intensity and Field Correlations in Quasi-one-dimensional Wires

G. Cwilich (Yeshiva University, USA); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Near-field Intensity Correlations in Semicontinuous Metal-dielectric Films

H. Cao (Northwestern University, USA); K. Seal (Northwestern University, USA); A. K. Sarychev
(Ethertronics Inc., USA); D. A. Genov (Purdue University, USA); V. M. Shalaev (Purdue University,
USA); A. Yamilov (Northwestern University, USA); H. Noh (Northwestern University, USA); Z. C. Ying
(National Institute of Standards and Technology, USA); . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
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Validity of Kinetic Models for Waves in Random Media

G. Bal
Columbia University, USA

We consider the derivation of kinetic equations to model the correlation of two wavefields such as e.g.,
acoustic or electromagnetic wavefields propagating in possibly different highly heterogeneous media. The main
mathematical tool in the derivation is the Wigner transform. The validity of the kinetic models is then assessed
by comparing the spatial distribution of the energy density they predict with simulations of wave equations
in highly heterogeneous media. The simulations are performed in two space dimensions on domains of size
comparable to 500 wavelengths. This is joint work with Olivier Pinaud.
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On the Intermittency of the Light Propagation in Disordered
Optical Materials

Y. A. Godin and S. Molchanov
University of North Carolina at Charlotte, USA

Abstract—We consider propagation of light through an ensemble of N À 1 statistically independent optical
fibers of length L whose refraction coefficient is a random function of length. We introduce the generalized
transmission coefficient |t(k, L)|p for energy k2 and study its quenched and annealed Lyapunov exponents. For
small disorder we calculate the Lyapunov exponents in asymptotic form.

1. Introduction
The idea of intermittency was originally proposed in the study of turbulent flow [1] and has become

widespread in statistical particle physics. Intermittency means random deviations from smooth and regular
behavior. To illustrate it, we consider a bundle of N , N À 1, statistically equidistributed independent optical
fibers of a fixed length L whose refractive index changes randomly along the length of the fiber. If one face of
the bundle is illuminated then, due to reflection of the light and its localization in the fibers, one might expect
that the outlet of the bundle will be uniformly dark. However, because of strong statistical fluctuations of the
transparency (that is a typical manifestation of the intermittency), the exit of the bundle will look like a dark
sky with sparse bright stars. This model was proposed by I. M. Lifshits [2] to explain high irregularity of the
light distribution after propagation through a thick layer of a disordered optical material. Propagation of light
in each fiber is described by the equation

− ψ′′ + σVj(x)ψ = k2ψ, j = 1, 2, . . . , N, (1)

where Vj(x) are homogeneous random potentials equal zero outside the fibers and constant σ characterizes
strength of the disorder.

Equation 1 has scattering solutions

ψk,j(x) =

{
eikx + rj(k) e−ikx, x < 0,

tj(k) eikx, x > L,
(2)

where tj(k) and rj(k) are random complex transmission and reflection coefficients, respectively, such that

|tj(k)|2 + |rj(k)|2 = 1. We also introduce the empirical mean
1
N

N∑

j=1

|tj(k)|2 for the transmitted energy provided

the energy density of the incident wave equals one for each waveguide, and for fixed L and N →∞

1
N

N∑

j=1

|tj(k)|2 a.s.−→ 〈|t(k, L)|2〉, (3)

where a.s. means almost surely (with probability one). Expressions |t(k, L)|p and 〈|t(k, L)|p〉 are decreasing ex-
ponentially as L →∞ whose logarithmic rate of decay we call the quenched and annealed (moment) transmission
Lyapunov exponents, respectively,

γT
q (k, p) = lim

L→∞
ln |t(k, L)|p

L
= p lim

L→∞
ln |t(k, L)|

L
= pγT (k), (4)

µT
a (k, p) = lim

L→∞
ln〈|t(k, L)|p〉

L
. (5)

Using this notation we can quantitatively characterize intermittency: after propagation through the fiber
bundle light exhibits intermittency if

|µT
a (k, 2)| < |γT

q (k, 2)|. (6)

The stronger inequality (6) is, the more intermittent is the distribution of energy on the exit of the fiber bundle.



90 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

2. Analytical Tools
The study of equation 1 with representative potential V (x) is based on the phase-amplitude formalism.

Let ψ
(i)
k (x), i = 1, 2, be the fundamental set of solutions of (1) with initial values ψ

(1)
k (0) = 1, d

dxψ
(1)
k (0) = 0,

ψ
(2)
k (0) = 0, d

dxψ
(2)
k (0) = 1. The matrix

Mk([0, L]) =




ψ
(1)
k (L) kψ

(2)
k (L)

1
k

d

dx
ψ

(1)
k (L)

d

dx
ψ

(2)
k (L)


 (7)

is the propagator of (1) whose determinant equals one.
For the general solution of (1) we put

ψk(x) = rk(x) sin θk(x),
dψk(x)

dx
= krk(x) cos θk(x). (8)

Then for θk and ln rk we obtain the following system [2], [3]

dθk(x)
dx

= k − σV (x) sin2 θk

k
, (9)

d ln rk(x)
dx

=
1
2k

sin 2θk(x)V (x). (10)

In most cases of interest [2], [3], the phase θk(x) ∈ [0, π) represents either a Markov process with generator L
(white noise potential) or a component of a multidimensional Markov process (the Kronig-Penny model). To
illustrate intermittent behavior of light distribution, we use the simplest case when the potential V (x) = ḃ(x)
is the white noise (the derivative of the Brownian motion b(x)).

Equations 9–10 are understood as Itô’s stochastic differential equations with Stratonovich corrections. In
our case, the generator of the diffusion process (9) has the form [4]

(Lf)(θ) =
B2(θ)

2
d2f

dθ2
+

(
A(θ) +

(BB′)(θ)
2

)
df

dθ
, (11)

where A(θ) = k, B(θ) = −σ sin2 θ

k
. Similarly,

d(ln r(x)) =
(

α(θ(x)) +
1
2
βB(θ(x))

)
dx + β (θ(x)) · db(x) (12)

with α = 0 and β(θ) =
σ sin 2θ

2k
. Hence,

rp(x) = e

∫ x

0
D(θ) · db(z) +

∫ x

0
C(θ) dz, (13)

where D(θ) = pβ(θ(z)) and C(θ) = p(α + 1
2βB)(θ(z)) dz. If up(x, θ) = 〈rp(x)|θ(0) = θ〉 is the expectation of

rp(x), then up(x, θ) satisfies the Feynman-Kac formula which for the white noise potential has the form

∂up

∂x
=

σ2 sin4 θ

2k2

∂2up

∂θ2
+

(
k +

σ2(1− p) sin2 θ sin 2θ

2k2

)
∂up

∂θ
+

σ2p sin2 θ cos θ(p cos θ − sin θ)
2k2

up = L̃pup. (14)

Formula (14) allows to calculate the Lyapunov exponent for the amplitude r(L). In the quenched case we have

ln r(L)
L

=
1
L

∫ L

0

1
2
βB(θ(x)) dx + β(θ(x)) · db(x) a.s.−→ 〈1

2
βB〉η

= − σ2

4k2

∫ π

0

η(θ) sin 2θ sin2 θ dθ = γq(k). (15)

Here η(θ)dθ is the invariant measure for the phase θ(x) which satisfies the equation

L∗η =
d2

dθ2

(
σ2 sin4 θ

2k2
η

)
− d

dθ

[(
k +

σ2 sin2 θ sin 2θ

2k2

)
η

]
= 0 (16)

that can be solved exactly.
Consider now the moment Lyapunov exponent
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µa(p) = lim
L→∞

ln〈rp(L)〉
L

. (17)

According to Perron–Frobenius theorem about positive semigroups, µa(p) equals maximum eigenvalue of the
nonsymmetric operator L̃p (14) L̃pψ = µa(p)ψ (18)
and the corresponding eigenfunction ψ(x) is strictly positive.

The Lyapunov exponent γ(k) of the amplitude r(L) and µ(p) have the following properties:

(a) γ(k) > 0. This property leads to the localization theorem for the Hamiltonian Hψ = −ψ′′+σV (x)ψ = λψ
on the whole real axis [2], [3].

(b) For fixed k the annealed Lyapunov exponent is analytic in p and convex.

(c) µ(p) is symmetric with respect to p = −1: µ(p) = µ(−p − 2) and
dµ

dp
(0) = γ(k). In particular, µ(0) =

µ(−2) = 0 (Fig. 1).

(d) For small disorder constant σ and fixed k γ(k) =
πσ2B̂(2k)

4k2
(1+o(σ)), where B̂(2k) is the spectral density

of the potential V . For the white noise γ(k) =
σ2

8k2
(1 + o(σ)) and µa(p) ≈ 1

2
p(p + 2)σ2γ(k) as σ → 0.

 3  2  1 0 1 2 3

 µ
 a

 (p)  µ
 a

T
 (p)

Figure 1: Graphs of the annealed moment Lyapunov exponent µa(p) (solid line) and transmission Lyapunov
exponent µT

a (p) (crossed line) for fixed k and small σ.

The energy transmission coefficient can be calculated through the matrix Mk([0, L]) (7) as follows

|t(k, L)|2 =
4

2 + ‖Mk([0, L])‖2 , (19)

where the norm is understood as the sum of the squares of matrix’s entries. Then ‖Mk([0, L])‖2 = [r(1)
k (L)]2 +

[r(2)
k (L)]2. From asymptotic behavior of the amplitudes ln r

(i)
k (L) ≈ γ(k)L, i = 1, 2, with probability one as

L →∞ we conclude that ln ‖Mk([0, L])‖ ≈ γ(k)L. Therefore,

ln |t(k, L)|
L

=
1
L

ln

√
4

2 + ‖Mk([0, L])‖2 → −γ(k). (20)

Thus, the quenched transmission Lyapunov exponent is

µT
q (k, p) = lim

L→∞
ln |t(k, L)|p

L
= −pγ(k) < 0. (21)

Calculation of the annealed Lyapunov exponent is more difficult. Typically rk ∼ eLγ(k). However, with expo-
nentially small probability rk(L) can be of the order e−δL, δ > 0. Then 〈rp

k(L)〉 = e−pδLP{ln rk(L) < −δL},
and for very negative p the product tends to +∞ (Fig. 1). We use large deviation theory [5] to calculate
µT

a (k, p). Let us take 0 ≤ β < γ and estimate P{rk(L) < eβL}. Using exponential Chebyshev inequality with
optimization over parameter p ≤ 0 we obtain
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P{rk(L) < eβL} = P{rp
k(L) > epβL} ≤ min

p≤0

〈rp
k(L)〉
epβL

∼ min
p≤0

e(µa(k,p)−pβ)L = eµ∗(k,p)L, (22)

where µ∗(k, β) = max
p

(−pβ + µa(k, p)) is the Legendre transform [6] of µ(k, p) for fixed k with respect to

parameter p. It is well-known that in the Markov case it is not only estimation from above but the logarithmic
equivalence: P{rk < eβL} log∼ e−µ∗(k,p)L. Now for p > 0

〈|t(k, L)|p〉 log∼
∫

1
e−pβL + epβL

dP{rk < eβL} = max
0≤β≤γ

e−pβL−µ∗(k,β) =

{
eµ(k,−p)L, 0 < p ≤ 1,

eµ(k,−1)L, p > 1.
(23)

For small σ we can use parabolic approximation for µT
a (k, p) that gives

γT
q (k, p) = −p

πB̂(2k)
4k2

σ2(1 + o(1)) (24)

and

µT
a (k, p) =





p(p + 2)
πB̂(2k)

8k2
σ2(1 + o(1)), p ≤ 1,

−πB̂(2k)
4k2

σ2(1 + o(1)), p > 1,

(25)

where B(x) = Cov(V (y)V (y+x)) is the covariance of random potential V (x), and B̂(k) =
1
2π

∫ ∞

−∞
e−ikxB(x) dx

is the corresponding energy spectrum of V (x) (Fig. 1). In particular, for p = 2

µT
a (k, 2) ≈ 1

4
γT

q (k, 2) < 0. (26)

This relation is the manifestation of the strong intermittency (cf. [1]). It shows that the main contribution to
the transmitted energy comes not from “typical” fibers where the logarithmic rate of energy decay is γT

q (k, 2),

but rather from few rare fibers (the probability of their occurrence is e
1
4 γT

q (k,2)L) through which significant part
of the energy of order O(1) is transmitted. Thus, we have the I. M. Lifshits picture described in the introduction.

3. Conclusion
We have considered propagation of light through a bundle of independent optical fibers whose refractive

index is a random function of length. It is found that distribution of energy at the exit of the bundle has inter-
mittent behavior. For quantitative estimation of irregularity we introduced the generalized energy transmission
coefficient and studied its Lyapunov exponent. Essential difference in the quenched and annealed energy trans-
mission Lyapunov exponents is suggested as a manifestation of intermittency. In the case of small randomness
of the fiber refractive index it is found that the energy transmission Lyapunov exponent of a typical single fiber
is four times bigger than the average one of the bundle. Unlike the moment Lyapunov exponent µa(p) for the
amplitude which has quadratic dependence on the moment p, the transmission moment Lyapunov exponent is
constant for p ≥ 1.
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Model of the Electromagnetic Contribution to Wurface Enhanced
Raman Scattering (SERS)

V. Giannini, J. A. Sánchez-Gil, and J. V. Garćıa-Ramos
Consejo Superior de Investigaciones Cient́ıficas, Spain

E. R. Méndez
División de F́ısica Aplicada, México

In this work, we present a theoretical model of the electromagnetic contribution to surface enhanced Raman
scattering (SERS). The SERS effect is characterized by the enormous intensification of the Raman emission of
molecules, when these are adsorbed on a metallic surface (with nanometric roughness). This intensification is
several orders of magnitude higher than the Raman emission of isolated molecules. In recent years, SERS spec-
troscopy has improved in sensitivity so as to make possible the detection of a single molecule on a nanostructured
substrate [1]. The SERS effect is due to the combined action of chemical and electromagnetic enhancement
mechanisms. Leaving aside the contribution of the chemical mechanism, this is possible provided that there
is a huge concentration of electromagnetic field on certain points of the substrate, due to the excitation and
localization of surface plasmons [2–4].

We thus investigate the electromagnetic mechanism that is responsible for such surface-plasmonind-
uced, electromagnetic field enhancements. Our theoretical model incorporates the Raman response of a metallic
surface covered with a dipole layer. The calculation of the scattered electromagnetic field is based on the exact
Green’s theorem integral equation formulation. With this model we are able to calculate the surface field, near
field, and far field at the Raman-shifted frequency, separately of the electromagnetic field at pump frequency.
A rigorous calculation of the scattered electromagnetic field has been carried out for random metal surfaces
with similar properties to those exhibited by nanostructured metal substrates used in SERS. Numerical results
are presented for single realizations, along with mean values of the SERS enhancement factor averaged over an
ensemble of realizations [1].
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The Local Density of States in Finite Size Photonic Structures,
Small Particles Approach

V. Prosentsov
University of Twente, The Netherlands

A. Lagendijk
FOM-Institute for Atomic and Molecular Physics, The Netherlands

We study the local density of states in finite size photonic structures by considering them as made of small
particles. Dividing the structure into segments with a size small compared to the incident wavelength, one can
apply methods suitable for the wave scattering by small particles. This local perturbation method correctly
reproduces the lowest frequency resonance of the small particles and it fulfills the optical theorem (energy
conservation). The small particles can be given prescribed positions in space: for instance random, or periodic
as in a photonic crystal. By using the local perturbation method, we have calculated the local density of states
for one, two, and three dimensional finite size photonic structures.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 95

Spatial Wave Intensity and Field Correlations in
Quasi-one-dimensional Wires

G. Cwilich
Yeshiva University, USA

Spatial intensity correlations between waves transmitted through random media are analyzed within the
framework of the random matrix theory of transport. Assuming that the statistical distribution of transfer
matrices is isotropic, we found that the spatial correlation function of the normalized intensity can be expressed
as the sum of three terms, with distinctive spatial dependences. This result coincides with the one obtained
in the diffusive regime from perturbative calculations, (Patrick Sebbah et al. in Phys. Rev. Lett. 88, 123901,
2002), but holds all the way from quasi-ballistic transport to localization. It is only the specific value of the
coefficients which depends on the specific transport regime. Their values obtained from the Monte Carlo solution
of the Dorokhov, Mello, Pereyra, and Kumar (DMPK) scaling equation are in full agreement with microscopic
numerical calculations of bulk disordered wires. The experimental and numerical results are recovered inh the
large-N (number of propagating channels) limit in Random Matrix theory. While correlations are positive in
the diffusive regime, we predict a transition to negative correlations as the length of the system decreases.
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Near-field Intensity Correlations in Semicontinuous
Metal-dielectric Films

H. Cao1, K. Seal1, A. K. Sarychev2, D. A. Genov3

V. M. Shalaev3, A. Yamilov1, H. Noh1, and Z. C. Ying4

1Northwestern University, USA
2Ethertronics Inc., USA
3Purdue University, USA

4National Institute of Standards and Technology, USA

Figure 1: C(0,∆y) and C(∆x, 0) at
p = 0.36 solid line), 0.65 (dashed line)
and 0.83 (dotted line). For comparison,
all curves are normalized to a value of
unity.

Spatial correlations of field and intensity are indicative of the na-
ture of wave transport in random media and have been widely investi-
gated in the context of electromagnetic wave propagation in disordered
dielectric systems However, less is known of near-field intensity corre-
lations in metallic random systems, which can exhibit rich phenomena
due the involvement of intrinsic resonance effects-surface plasmons.
Neither is clear the difference between correlation functions in metal-
lic and dielectric systems.

This paper presents the first experimental study of near-field in-
tensity correlations in metal-dielectric systems in regimes where lo-
calization and delocalization are expected. Significant differences are
observed between the spatial intensity correlations functions in metal-
dielectric systems and those of purely dielectric random media.

In disordered metallic nanostructures, surface plasmon modes are
governed by the structural properties of the system and may be
strongly localized. Recent theoretical studies of metallic nanoparti-
cle aggregates suggest that the eigenmodes of such systems may have
properties of both localized and delocalized states. However, it is not
clear how such eigenmodes impact the propagation or localization of
surface plasmon polaritons excited by impinging light, an issue ad-
dressed in this study. In the current experiment, the concentration
of metal particles on a dielectric surface p was varied over a wide
range to control the amount of scattering. Spatial intensity corre-
lations obtained from near-field optical microscopy (NSOM) images
show a transition from propagation to localization and back to propa-
gation of optical excitations in planar random metal-dielectric systems
with increase in metal filling fraction.

Semicontinuous silver films on glass substrates were synthesized by pulsed laser deposition. Samples were
illuminated by the evanescent field (in the total internal reflection geometry) of He-Ne lasers, and the local optical
signal was collected by a fiber tip. From the near-field images, we computed the 2D correlation functions for
near-field intensities. Fig. 1 shows the intensity correlation functions in the directions parallel and perpendicular
to the incident wave vector k‖, i. e., C(0,∆y) and C(∆x, 0). Along k‖, C(0,∆y) exhibits oscillatory behavior at
p = 0.36 with a period of 870 nm. This oscillation is replaced by a monotonic decay at p = 0.65. At p = 0.83, the
oscillations reappear with a smaller period of 690 nm. The presence of oscillations in C(0,∆y) is an indication of
wave propagation along the y-axis. This propagation is suppressed at p = 0.65, suggesting localization of near-
field energy. Therefore, the existence, suppression and reappearance of the oscillations in the near-field intensity
correlation function with increasing p correspond to a gradual transition from propagation to localization and
back to propagation of optical excitations in the samples. Note that the oscillation periods observed above are
always larger than λ, in contrast with purely dielectric media, which exhibit damped oscillations with a period
of λ/2.
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Cones, Spirals, and Möbius Strips in Multiply Scattered Light

I. Freund
Bar-Ilan University, Israel

Laser light scattered by a multiple scatterer invariably emerges elliptically polarized. In general, the orien-
tations of the ellipses in elliptically polarized light vary throughout space. In three dimensions the orientation
of an ellipse may be described by a 3-frame in which one frame axis is along the major axis of the ellipse, a
second frame axis is along the minor axis of the ellipse, and the third frame axis is along the normal to the
ellipse. These three axes are shown to generate cones, spirals, and Möius strips, characterized by a total of 27
different topological indices.

For ordinary ellipses (the vast majority) that are not on singular lines of circular or linear polarization,
the Möbius strips have one full twist, and there are a total of 21 indices that are non zero. These indices,
if independent, could collectively divide the field into 221 = 2, 097, 152 structurally different grains separated
by grain boundaries on which an index becomes undefined. Selection rules, however, reduce the number of
independent configurations to 140,608, while within a linear approximation for the local field surrounding an
ellipse there exist degeneracies that further reduce the number of distinguishable configurations to 17,360. Of
these, 1,728 are of first order, and should be readily accessible to experiments using recently developed optical
near field methods.

Analytical expressions have been obtained for all indices in terms of the 20 parameters needed to define a
general field of ellipses within the linear approximation, and more than 10,000 different configurations have been
harvested in a simulated multiply scattered random field (speckle pattern), demonstrating that large numbers
of configurations can be expected appear in practice.

This previously unsuspected, indeed unprecedented, structural proliferation is intrinsic to spatially varying
elliptically polarized light, and in addition to random fields, is found in the fields of wave guides that support a
small number of modes (2–3), as well as in the highly ordered fields of optical lattices. Other systems described
locally by spatially varying 3-frames, such as liquid crystals, or the dielectric constants of continuous random
media, can be expected to show a similar degree of structural proliferation.
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Absorption Induced Confinement of Lasing Modes in Diffusive
Random Medium

A. Yamilov1, A. L. Burin2, X. H. Wu1, and H. Cao1

1Northwestern Unversity, USA
2Tulane University, USA

Tight focusing of pump light on a weakly scatting (diffusive) random medium can lead to lasing with coherent
feedback [1]. Imaging of laser light on the sample surface revealed that the lasing modes were not extended over
the entire random medium, instead they were located inside the pumped region with an exponential tail outside
of it [2]. Since the quasimodes of a random system far from the onset of localization are usually extended states,
the origin of the localized lasing modes is not clear.

We use FDTD method to simulate lasing in TM modes of 2D random media. The disordered system is a
collection of dielectric cylinders placed at random in vacuum. The lateral dimension of 2D random system is
9.2 µm. Transport mean free path l ' 1.3 µm ¿ L, so that the system is in the diffusive regime. By assigning
negative conductance (inside cylinders) to the pumped region and positive conductance to unpumped region,
we are able to include both light amplification and reabsorption of the emitted light.

(a) (b) (c) (d)

Figure 1: Mode modification in the presence of reabsorption (see text).

Fig. 1(a) shows spatial intensity distribution of the (extended) quasimode with the longest lifetime in a
passive diffusive system. in Fig. 1(b) we show the (first) lasing mode with gain inside the circular region near
the center and no absorption outside. Although optical gain is local, the lasing mode is extended throughout
the entire sample-the lasing mode profile remains the same as in Fig. 1(a). The lasing mode in the presence of
reabsorption outside the circle, Fig. 1(c), is a new mode, completely different from the quasimode of the passive
system. It is confined inside the pumped region, and shows an exponential decay outside. The reabsorption
suppresses the feedback from absorbing part of the sample, effectively reducing the system size to Veff . Indeed,
Fig. 1(d) depicts the lasing mode when we remove all the random medium beyond one diffusive absorption
length from the pump area (dashed circle). The frequency and spatial profile of the lasing mode remain the
same as in Fig. 1(c).

This reduction of the effective system volume leads to a decrease of the Thouless number δ ≡ δν/∆ν, where
δν and ∆ν are the average mode linewidth and spacing respectively. In a 3D diffusive system δν ∝ V

−2/3
eff and

δν ∝ V −1
eff , therefore, δ ∝ V

1/3
eff . The smaller the value of δ, the larger the fluctuation of the decay rates γ of

the quasimodes. We believe the broadening of the decay rate distribution along with the decrease of the total
number of quasimodes (within Veff ) is responsible for the observation of discrete lasing peaks in the regime of
tight focusing of pump beam [1].
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Exploiting Multiple Scattering of Waves in Random Media

J. A. Scales and K. van Wijk
Colorado School of Mines, USA

In this talk we describe our experimental work in the measurment of phase-coherent multiple scattering
of waves in random media. We use a wide variety of non-contacting optical, millimeter wave and ultrasonic
techniques to probe natural random media (such as rocks) as well as artificial systems. By using non-contacting
methods we can record dense, high-fidelity data sets which sample the random fluctuations of the media. By
carefully measuring the phase of these waves as well as their amplitude, we can exploit mesoscale fluctuations
to achieve resolution beyond diffusion and radiative transfer, which neglect this phase information.
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Coherent-potential-approximation Multiple-scattering Scheme for
the Study of Photonic Crystals with Substitutional Disorder

V. Yannopapas
University of Patras, Greece

Photonic crystals of spherical scatterers have been theoretically studied using the the layer Korringa-Kohn-
Rostoker (LKKR) method [1, 2] which is ideally suited for the calculation of the transmission, reflection and
absorption coefficients of an electromagnetic (EM) wave incident on a composite slab consisting of a number
of planes of non-overlapping particles with the same two-dimensional (2D) periodicity. For each plane of
particles, LKKR calculates the full multipole expansion of the total multiply scattered wave field and deduces
the corresponding transmission and reflection matrices in the plane-wave basis. The transmission and reflection
matrices of the composite slab are evaluated from those of the constituent layers. In this study we present a
photonic version of the coherent-potential approximation (CPA) [3, 4] for the study of photonic crystals with
substitutional disorder (photonic alloys) within the LKKR context. The CPA method has been extensively used
in the study of the electronic properties of disordered atomic alloys [5, 6] and is expected to give reasonably
good results at least in the case of moderate disorder. It is the best approach for studying the properties
of a disordered photonic crystal by means of substituting it with an effective periodic one whose properties
correspond, on the average, to those of the actual disordered photonic crystal. The CPA-LKKR method is
applied to case of dielectric photonic crystals of both cermet, i.e., opals, and network topology, i.e., inverted
opals, as well as to the case of metallo-dielectric photonic crystals in order to determine an effective permittivity
in the long-wavelength limit. The method is also used for the calculation of the transmission/ reflection and
absorption coefficients of light incident on finite slabs of disordered photonic crystals.
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Two-dimensional Randomly Rough Surfaces that Act as Gaussian
Schell-model Sources

E. R. Méndez
División de F́ısica Aplicada, Mexico

T. A. Leskova and A. A. Maradudin
University of California, USA

We consider the scattering of a scalar Gaussian beam of frequency ω incident normally on a twodimensional
randomly rough surface defined by x3 = ζ(x‖), where x‖ = (x1, x2, 0). The region x3 > ζ(x‖) is vacuum while
the region x3 < ζ(x‖) is the scattering medium. We assume that the Dirichlet boundary condition is satisfied
on the surface x3 = ζ(x‖). We denote the scattered field in the vacuum region by Φ(x|ω)sc, and its value
on the plane x3 = 0, by Φ(x‖|ω)sc. We seek the surface profile function ζ(x‖) for which Φ(x‖|ω)sc satisfies
the condition 〈Φ(x‖|ω)sc)Φ∗(x‖|ω)sc〉 = A2exp(−x2

‖/4σ2)exp[−(x‖ − x
′
‖)

2/2σ2
g ]exp(−x

′2
‖ /4σ2

s ), where the angle
brackets denote an average over the ensemble of realizations of ζ(x‖). Such a surface is a Gaussian Schell-model
source of radiation. The field scattered from the resulting surface, although it is only partically coherent, has
the intensity distribution of a fully coherent laser beam whose intensity in the plane x3 = 0 has the form
A2

Lexp(−2x2
‖/δ2

L), where δL = 2σsσg/(σ2
g + σ2

s)1/2 and ALδL = 2Aσs.
Two approaches are used to determine the surface profile function that acts as a Gaussian Schellmo-

del source. Both are based on the geometrical optics limit of the phase perturbation theory expression for the
scattered field. In the first approach the surface profile function ζ(x‖) is represented as a continuous array of
triangular facets. The joint probability density function of two orthogonal slopes of each facet is determined
from the condition that the field scattered from the resulting surface has the desired correlation property in the
plane x3 = 0. In the second approach it is shown that a surface profile function ζ(x‖) that is a stationary, zero-
mean, isotropic, Gaussian random process, can also act as a Gaussian Schell-model source, when the rms height
and transverse correlation length of the surface roughness are suitably chosen. Each of these two approaches is
validated by the results of numerical simulation calculations of the intensity distribution of the scattered field,
which show that it indeed has the form of a laser beam.
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The Design of Two-dimensional Randomly Rough Surfaces with
Specified Scattering Properties: Non-normal Incidence

A. A. Maradudin and T. A. Leskova
University of California, USA

In a recent paper [1] a method was proposed for designing a two-dimensional randomly rough surface on
which the Dirichlet boundary condition is satisfied that, when illuminated at normal incidence by a scalar plane
wave, produces a scattered field whose mean differential reflection coefficient has a specified dependence on the
scattering angles. The method was based on the geometrical optics limit of the Kirchhoff approximation. The
mean plane of the surface, the x1x2 plane, was tessellated by equilateral triangles. For x1 and x2 within a
given triangle the surface profile function ζ(x1x2) was assumed to be a linear function of x1 and x2 of the form
b(0) + a(1)x1 + a(2)x2. The pair of slopes a(1) and a(2) for a given triangle were assumed to be random deviates
that were independent of the pair of slopes for any other triangle, and all pairs of a(1) and a(2) had the same
joint probability density function. The amplitude b(0) was determined by making the surface continuous. The
mean differential reflection coefficient was found to be given in terms of this joint probability density function.
This relation could be inverted to yield the joint probability density function in terms of the mean differential
reflection coefficient that the surface was intended to produce. From the joint probability density function for
a(1) and a(2) the marginal probability density functions were obtained, as well as the conditional probability
for a(2) given a(1), and vice versa. The rejection method [2] was then used with these marginal and conditional
probability density functions to construct an ensemble of realizations of the random surface. In the present
work we extend the approach proposed in [1] to the case of non-normal incidence, and illustrate it by applying
it to the design of a surface that scatters a plane wave in such a way as to produce a mean scattered intensity
that is constant within a rectangular region of scattering angles, and produces no scattering outside this region.
It is validated by the results of numerical simulation calculations.
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