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Microlocal Analysis of RADAR

C. Nolan
University of Limerick, Ireland

Microlocal analysis is a powerful mathematical tool that has developed as a refinement of geometrical optics.
We will introduce it and show how to use it to analyze the scattering of radio waves (RADAR) from the earth’s
terrain, and how it can be used to efficiently image the earth remotely.
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Detection of Small Tumors in Microwave Medical Imaging Using
Level Sets and Music

N. Irishina, M. Moscoso, and O. Dorn
Universidad Carlos III de Madrid, Spain

Abstract—We focus on the application of microwaves for the early detection of breast cancer. We investigate
the potential of a novel strategy using shapes for modeling the tumor in the breast. An inversion using a
shape-based model offers several advantages like well-defined boundaries and the incorporation of an intrinsic
regularization that reduces the dimensionality of the inverse problem whereby at the same time stabilizing the
reconstruction. We explore novel level-set techniques as a means to detect the tumor without any initialization
of its position and size. We present some numerical resonstructions and we compare them with the conventional
MUSIC algorithm, in particular with respect to the frequency which is used for the investigation. We show that
for different frequencies these two methods show a different qualitative behaviour in the reconstructions.

1. Introduction
Microwave imaging shows significant promise as a new technique for the early detection of breast cancer

(see [5] and references therein). This is so because of the high contrast between the dielectric properties of the
healthy breast tissue and the malignant tumors at microwave frequencies. As a consequence, microwave imaging
may be used as a clinical complement to the conventional mammography which is based on the attenuation of
X-rays that go through the breast. We note that mammographies offer high resolution images but with low
contrast.

Several image reconstruction algorithms have been investigated during the last years for the detection and
location of breast tumors using active microwave imaging. In this application, one is typically not so much
interested on the detailed reconstruction of the spatial distribution of the dielectric properties (which would
require by far more data than there are usually available), but mainly to answer in a fast, harmless and inex-
pensive way the following three questions: (i) whether or not there is a malignant tumor, (ii) its (approximate)
location, and (iii) its (approximate) size. Once these questions have been answered reliably, more details can
be investigated if necessary by alternative (but then typically more expensive) imaging techniques.

In this paper we investigate the use of the level set technique (see [4, 7–11] and references given there for
details) as a means to detect the presence, location and size of small tumors if their properties are assumed
to be known. The main difficulty in this work is the extremely limited view to the domain of interest due to
a very specific source-receiver geometry: all sources and receivers are located at the same side of the domain.
Our observation from earlier work [4] has been that in these situations the level set iteration, when initiated
with an arbitrary starting guess for the shape, tends to suffer from local minima, which makes it difficult to
reliably detect the correct location of the tumor. Therefore, we have investigated an adaptation of our level set
approach to this new situation which is able to start without any pre-specified starting guess for the shape. Our
algorithm is able to create shapes in any location of the domain. It does so during the early iterations taking
into account the data and the sensitivity mapping of the inverse problem. Once a good first approximation for
the shape is found, it continues in a completely automatic way with optimizing this shape until the data least
squares cost functional is sufficiently reduced. We compare the results of numerical experiments for this new
reconstruction algorithm with those of a straightforward (and non-optimized) implementation of the MUSIC
algorithm (for a detailed theoretical and numerical investigation of this imaging scheme see for example [1–3, 6]
and the references given there). Some conclusions of this comparison are given at the end of this paper.

2. Level Set Formulation of the Problem
For modelling TM-waves in Microwave imaging we use a scalar Helmholtz equation for u(x) describing one

component of the electric field. It is

∆u + κ(x)u = q(x) inΩ = IR2 (1)

with κ(x) = ω2µ0ε0

[
ε(x) + iσ(x)

ωε0

]
. The field u is required to satisfy the Sommerfeld radiation condition, and it

is assumed to be continuous together with its normal derivatives across interfaces. In the shape inverse problem
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Figure 1: Left: The MUSIC estimate (10), normalized to one, of the location of one tumor in a homogeneous
medium. The exact location and the size of the 2×2 mm2 tumor is denoted by the square. The tumor is located
less deeper in the top row than in the bottom one. The frequencies used in these images are 3GHz (left column)
and 4 GHz (right column). Right: Evolution of a shape by a level set formulation.

we assume that the parameter distribution is described by

κ(x) =
{

κi in S
κe in Ω\S (2)

where S defines the shape of the tumor. For the formal derivation of our reconstruction approach we introduce

the one-dimensional Heaviside function H(ψ) which is defined as H(ψ) =
{

1 , ψ > 0
0 , ψ ≤ 0 We call ψ a level

set representation of the shape S if

κ(ψ) = κeH(ψ) + κi(1−H(ψ)). (3)

Using the level set representation, ψ(x) the shape S is characterized by all those points x ∈ Ω where ψ(x) ≤ 0,
and the region Ω\S is characterized by those points x ∈ Ω where ψ(x) > 0 (see Fig. 1 on the right). The
boundary of the shape S is then modeled by the zero level set ∂S = {x ∈ Ω : ψ(x) = 0 }. It is clear that the
level set representation of a given shape S is not unique. However, every continuous function ψ uniquely specifies
a corresponding shape (which we denote S[ψ]) by the above definitions. We now define the least squares data
misfit cost functional J (ψ) = 1

2

∥∥R(κ(ψ))
∥∥2, where R(κ(ψ)) denotes the difference between measured data and

those calculated by a forward solver using the parameter distribution κ (modeled by the level set function ψ).
The goal during the shape reconstruction problem will be to find an evolution of the level set functions ψ in
artificial evolution time t which reduces and eventually minimizes this cost functional. We consider the general
evolution law

dψ

dt
= f(x, t, ψ,R, . . .) (4)

for the level set function ψ describing the shape S during the artificial evolution. Then the unknown which we
are looking for is the forcing term f(x, t, ψ,R, . . .), which might depend on a variety of parameters as indicated.
Formally differentiating (3) with respect to ψ yields dκ

dψ = (κe − κi)δ(ψ) where δ(ψ) = H ′(ψ) is the one-
dimensional Dirac delta distribution. Formally differentiating the least squares cost functional J (κ(ψ(t))) with
respect to the artifical time variable t and applying the chain rule yields

dJ
dt

= Re

∫

Ω

R′l(κ)∗R(κ) (κe − κi)δ(ψ) f(x, t, ψ,R, . . .) dx , (5)

where Re indicates the real part of the corresponding quantity. In (5), R′l(κ)∗ denotes the formal adjoint of
the linearized Residual operator R′l(κ) and the expression R′l(κ)∗R(κ) coincides with the pixel-based Frechét
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Figure 2: Reconstruction of a small tumour with the level set formulation. Left: using frequency 1 GHz. Right:
using frequency 4 GHz. More details can be found in the text.

derivative of the parameter-to-data mapping of the corresponding parameter reconstruction problem [10]. Using
the fact that formally δ(ψ) > 0 in (5), we can define the search or descent direction as

f
d
(x) = − Re ((κe − κi)R′l(κ)∗R(κ)) for all x ∈ Ω. (6)

In contrast to more tradional level set approaches which typically use a Hamilton-Jacobi-type formulation, our
search direction f

d
(x) has the property that it can be applied even if there is no initial shape available when

starting the algorithm. Therefore, it allows for the creation of objects at any point in the domain, by lowering
a positive level set function until its values arrive at zero. This property is useful for avoiding certain types
of local minima which often occur in level set formulations which are solely based on the propagation of an
already existing shape. Numerically discretizing (4) by a straightforward finite difference time-discretization
with time-step τ > 0 and interpreting ψ(n+1) = ψ(t + τ) and ψ(n) = ψ(t) yields the iteration rule

ψ(n+1) = ψ(n) + τf
d
(x), ψ(0) = ψ0. (7)

3. MUSIC formulation of the problem
We consider an array of N electromagnetic transducers located at positions xn, n = 1, 2, . . . , N . Two

adjacent transducers are separated by a distance λ0/2, where λ0 denotes the wavelength of the signal emmited
by the array. With this arrangement the transducers do not behave like separate entities but like an array having
an aperture a = (N − 1)λ0/2 that interrogates the medium. Within the medium there are M targets (tumors)
located at positions ym, m = 1, . . . ,M . The scattered echos by the tumors are recorded at the array. We call
the resulting data set the multistatic response matrix (MSR matrix) K = (Kij), whose entries are defined by
the scattered field detected at the ith transducer (in receive mode) when the jth transducer (in active mode)
emits an electromagnetic signal. The goal is to estimate the location ym of the tumors from the knowlegde of
the MSR matrix. The singular value decomposition of the MSR is given by

K = UΣV H , (8)

where the superscript H denotes the hermitian matrix. In (8), Σ is a diagonal matrix whose diagonal entries
σ2 are the eigenvalues of the time reversal matrix (TR matrix) T = KHK. If there are less targets than array
elements (M < N) there are at most M non zero eigenvalues indexed from 1 to M , and N −M zero eigenvalues
indexed from M + 1 to N . The column vectors of the matrix U in (8), denoted by Uk (k = 1, . . . , N), are
the eigenvectors of T = KHK normalized to one. The column vectors of V , denoted by Vk (k = 1, . . . , N),
are the complex conjugates of Uk. It can be shown that the N dimensional space of signal vectors applied to
the N element antenna array can be expresses as the direct sum S ⊕ N [6]. The signal subspace S can be
spanned by the significant eigenvectors of the TR matrix T , i. e., by Uk with k = 1, . . . , M , while the null space
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Figure 3: Reconstruction of a small tumour with the level set formulation. Left: using frequency 1 GHz. Right:
using frequency 4 GHz. More details can be found in the text.

N is spanned by those eigenvectors having zero eigenvalues, i. e., by Uk with k = M + 1, . . . , N . The MUSIC
algorithm exploits the fact that the MSR matrix is a projection operator onto the signal subspace S which is
also spanned by the complex conjugates of the vectors

g(ym) = (G(x1,ym), G(x2,ym), . . . , G(xN ,ym))t , (9)

where m = 1, . . . ,M , the superscript t denotes the transpose, and G(r, r′) is the deterministic two-point Greens
function of the background medium. Therefore, we have that < Uk, g∗(ym) > for k = M + 1, . . . , N . Then, we
can display the objective functional

F(ys) =
1∑N

k=M+1 | < Uk, g∗(ys) > |2
(10)

for the search points ys in the domain. Since g∗(ys) is orthogonal to Uk, with k = M + 1, . . . , N , whenever the
search point ys equals a tumor location, (10) will exhibit a peak at those positions. We will normalize (10) to
one. We note that

N∑

k=M+1

| < Uk, g∗(ys) > |2 = |g∗(ys)−
M∑

k=1

(Ut
k g∗(ys))U∗

k|2 . (11)

Since in our application we will consider only one tumor (M = 1) it is more efficient to compute F(ys) =
(|g∗(ys)− (Ut

1 g∗(ys))U∗
1|2)−1, normalized to one, instead of (10).

4. Numerical Experiments
In the numerical experiments shown here, the domain of investigation consists of (simulated) tissue of the

size 10 × 8 cm2 in which a tumour of size 2 × 2mm2 is imbedded at different positions as shown in Figs. 2
and 3. The relative electric permittivity values are 9 in the background medium and 49 inside the tumor. For
simplicity, the conductivity value is assumed here to be a small constant of value 0.001 S/m everywhere in the
medium. 8 transducers are equidistantly positioned at the top side of the medium. They illuminate the medium
with microwaves of different frequencies (we use here 1, 3 and 4 GHz). We solve (1) with a second order finite
differences scheme and a perfectly matching layer (PML). The received numerical data have been perturbed by
5 % white Gaussian noise. Fig. 1 shows on the left the MUSIC estimate for the two target locations. In the
top row the target is located at a less deep position than in the bottom row. We have used frequencies of 3
GHz (left column) and 4 GHz (right column). Figs. 2 and 3 show the estimates of the level set based algorithm
for the two different locations of the hidden tumor. Each of these two figures is divided into two panels of 4
subfigures (the left panel shows results for frequency 1GHz and the right one for 4 GHz). Each panel of figures
is structured in the following way. Top left: true permittivity distribution; top right: reconstructed permittivity
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distribution; bottom left: final level set function viewed from the side; bottom right: horizontal cross section of
the final level set function through the location of the recovered tumor.

5. Observations and Conclusions
We observe in our numerical experiments that the MUSIC algorithm provides a good estimate of the cross-

range for high frequencies (4 GHz) with a resolution that decreases with depth (compare the top right and
bottom right images of Fig. 1). However, range information is lost (in particular at the deep location), and
therefore it should be obtained separetely. See for example Ref. [2]. For a lower frequency (3 GHz) both, range
and cross-range resolution decrease. For frequencies lower than 3GHz we were not able to get useful estimates
of the tumor locations with the MUSIC algorithm.

On the other hand, the level set based reconstruction scheme shows a somehow reversed behavior compared
to the MUSIC results. For lower frequencies (here 1 GHz) it shows a quite stable estimate of the approximated
tumor location, whereas for higher frequencies (here 4 GHz) the corresponding oscillations in the electromagnetic
fields tend to introduce artifacts in the reconstructions. As a consequence, the estimate using the level set
algorithm gives rise to a ghost location of the tumor in addition to its correct location. We note that the
resolution provided for the level set algorithm is much better than that given by the MUSIC algorithm. We also
want to mention here that the level set reconstruction method has also the potential of iteratively finding the
contrast values of the tumors from the given data if they are not a-priori known. Although this has not been
implemented so far in our algorithm, some related approaches can be seen in [7, 10–11]. The MUSIC algorithm
is not easily extendable to incorporate this feature.

We conclude that level set based algorithms can provide a useful and flexible strategy for the early detection
of small tumors in tissue with microwaves. In the future we plan to extend our method to the more complex
situation in which the dielectric properties of the healthy tissue and the tumor are unknown and need to be
reconstructed from the given data.
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The Mie Solution for Improving the Evolution Strategy in Breast
Cancer Imaging

S. Pandalraju, P. Rashidi, and M. El-Shenawee
University of Arkansas, USA

D. Macias
Université de Technologie de Troyes, France

In a previous work in microwave imaging, we have successfully characterized threedimensional malignant
breast cancer tumors employing evolution strategies. Particularly, we determined the form (with a number of
unknowns dependent on the irregularity of the shape) and the location (three unknowns) of non-spherical tumors
from scattering data. However, notwithstanding the encouraging results obtained, the iterative nature of the
imaging method required several CPU hours on a Hewlett-Packard AlphaServer DS25. In this work we propose
a strategy to speed up the imaging process through an improvement of the initialization of the evolutionary
search.

An evolution strategy is a heuristic population-based optimization technique, inspired on the Darwinian
principles of variation and selection, which searches the best fit solution through the exploration of a search space
with the assistance of a forward solver and a fitness functional. The variation stage includes the recombination
and mutation operations and is responsible for the increase in the variety of the search space. The selection
process retains those elements of the population leading to more promising regions of the search space. The
evolutionary loop continues until a convergence criterion has been fulfilled.

Instead of generating the initial population employing uniformly distributed random numbers, we initialize
the evolution strategy with a population estimated by means of Mie’s scattering theory. This approach is valid in
the sense that tumors can be considered, at least in principle, as lossy spheres immersed in a homogeneous lossy
medium. Thus, a decrease in the computing time required by the evolution strategy and method of moments
imaging method could be expected since the search space has been reduced to a region in the neighborhood of
the optimum.

Our preliminary results obtained employing the approach described above show potential in achieving con-
vergence at a faster rate. Some issues related to the error sensitivity are also discussed in this work.
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Radiative Transport Theory for Optical Molecular Imaging

A. D. Kimn
University of California, USA

We study the inverse fluorescent source problem for optical molecular imaging in tissues. We use the radiative
transport equation to model light propagation in tissues. In particular, we make use of analytical results for a
point source and a voxel source to compute estimates for the location and size of a general fluorescent source in a
halfspace composed of a uniform absorbing and scattering medium. We present numerical results demonstrating
this theory.
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Reconstructing Absorption and Diffusion Shape Profiles in
Optical Tomography Using a Level Set Technique

M. Schweiger1, O. Dorn2, V. Kolehmainen3, A. Zacharopoulos1, and S. Arridge1

1University College London, England
2Universidad Carlos III de Madrid, Spain

3University of Kuopio, Finland

A novel shape reconstruction algorithm for optical tomography is presented which is based on a level-set
formulation for the shapes. The goal is to recover contrast and shapes of inclusions in the absorption as well
as in the scattering/diffusion parameter simultaneously from boundary data. Evolution laws based on descent
directions for a cost functional are derived for two different level-set functions, one describing the absorption
and one the diffusion parameter, as well as for the parameter values inside these shapes. Numerical experiments
are presented in 2-D which show that the new method is able to simultaneously recover shapes and contrast
values of absorbing and scattering objects embedded in a slightly heterogeneous background medium from
simulated noisy data. These results are compared with more traditional pixel-based reconstructions, of which
the regularization parameter is determined by an L-curve method. It is shown that, using this regularization
parameter, the pixelbased reconstructions are severely smeared-out over a relatively large domain, such that
contrast values and sizes of the objects are not well recovered. Compared to these pixel-based reconstructions,
the shape-based inversions deliver a very good guess for the shapes, and the contrast values are recovered with
higher accuracy.
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3D Shape Reconstruction in Optical Tomography Using Spherical
Harmonics and BEM

A. Zacharopoulos1, S. Arridge1, O. Dorn2, V. Kolehmainen3, and J. Sikora4

1University College London, UK
2Universidad Carlos III, Spain
3University of Kuopio, Finland

4Warsaw University of Technology, Poland

Abstract—We consider the recovery of smooth 3D region boundaries with piecewise constant coefficients in
Optical Tomography (OT). The method is based on a parametrisation of the closed boundaries of the regions
by spherical harmonic coefficients, and a Newton type optimisation process. A boundary integral formulation
is used for the forward modelling. An advantage of the proposed method is the implicit regularisation effect
arising from the reduced dimensionality of the inverse problem. Results of a numerical experiment are shown
which demonstrate the performance of the new method in a realistic situation.

1. Introduction
In this paper, we explore a technique for the retrieval of the internal boundaries of 3D regions in fre-

quency domain Diffusive Optical Tomography (DOT), [3]. The optical parameter of interest in this application
are µa being the absorption coefficient, µ′s being the (reduced) scattering coefficient, and their combination
D = 1

3(µa+µ′s) being the diffusion coefficient. They are assumed to take piecewise constant values in the three
dimensional bounded domain Ω with jumps at the interior interfaces. There are several physiologically interest-
ing observations which can be derived from the knowledge of the absorption and diffusion of light in tissue. This
includes tissue oxygenation, blood volume and blood oxygenation [1, 2]. Primary applications are the detection
and classification of tumourous tissue in the breast, monitoring of the oxygenation level in infant brain tissue,
and functional brain activation studies.

Our model for light propagation in biological tissue is the diffusion equation [3]

−∇ ·D(r)∇Φ(r) + µa(r)Φ(r) +
iω
c

Φ(r) = q(r) (1)

where Φ(r) is photon density, c is the speed of light in the medium, and q(r) describes the source term. It
represents the number of photons per unit volume at the source position r. ω is the modulation frequency. The
appropriate boundary condition is of the Robin type (given by (4)). However, if we assume that the distribution
of the optical parameters inside the body Ω is arranged into L disjoint regions Ωj , so that Ω =

⋃L
j =1 Ωj , which

are separated by smooth closed interfaces Γj , and have piecewise constant optical properties {Dj , µa,j}, we may
describe the propagation of light by a set of coupled Helmholtz equations

−∆Φj + k2
j Φj = qj inΩj , (2)

with boundary conditions

Φj+1 = Φj , Dj+1
∂Φj+1

∂ν
= Dj

∂Φj

∂ν
onΓj , (3)

Φ1 + 2AD1
∂Φ1

∂ν
= 0 on ∂Ω . (4)

Here, A models the refractive index difference at the boundary ∂Ω. The respective (complex) ‘wavenumbers’
are k2

j (ω) = µa,j+
iω
c

Dj
.

The described inverse problem of 3D DOT is severely ill-posed due to the diffusive behavior of the fields
in the tissue and the relatively small number of available noisy data. This typically leads to quite unstable
reconstructions, unless strong regularization is applied. One possible way of regularizing the problem is to take
advantage of prior information about the general structure of the expected parameter distribution, which often
is available in medical applications from alternative imaging modalities or from general anatomical knowledge.
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Figure 1: Segmented MRI data of a baby’s scalp and as voxel volume (left), (Thanks to Richard Bayford,
Middlesex University).The mapping of the surface on the sphere (middle). The parametric representation with
11 degrees of spherical harmonics (right).

This will be our approach in this paper, assuming that the domain of interest can be divided into basically two
different zones: a background distribution and an embedded object whose shape can be approximately described
by a given (small) number of spherical harmonics parameters.

2. Parametric Representation of Surfaces
Our main interest lies in the use of geometric prior information in order to create a sufficiently realistic

model of the different subregions of an anatomical structure. Having in mind applications in head and brain
imaging, we decided to use the head’s geometry as a test bed. We can use good resolution MRI or CT-scan
images as prototypes. Both imaging modalities use voxel maps to create an image. The voxel faces comprising
the boundary surface are mapped to the surface of a sphere by a method described in [9].

Since our application is not limited to star-shaped objects, a harmonic distribution of the extracted surface’s
net onto the sphere’s surface was chosen instead of a direct radial function. Having defined coefficients {Cm

l },
we can use them to create the parametric description of the surface by weighted averaging with the relevant
spherical harmonics

υ =





υx(ϑ, ϕ) =
∑$

l=0

∑l
m=−l C

m
l,xY m

l (ϑ, ϕ),
υy(ϑ, ϕ) =

∑$
l=0

∑l
m=−l C

m
l,yY m

l (ϑ, ϕ),
υz(ϑ, ϕ) =

∑$
l=0

∑l
m=−l C

m
l,yY m

l (ϑ, ϕ) .

(5)

Here, $ is the maximum degree of spherical harmonics that we used for the particular representation. In
practice, to ensure that only real surfaces are represented, we define a real basis as

Ỹ m
l (ϑ, ϕ) :=

{
Re[Y m

l ](ϑ, ϕ), when m ≤ 0,
Im[Y m

l ](ϑ, ϕ), when m > 0, (6)

for which the orthogonal condition 〈 Ỹ m
l , ¯̃Y m′

l′ 〉 = δmm′δll′ still holds. For simplicity we introduce the notation
γj = {Cm

l }j , with l = 1, · · · , $ and m = −l, · · · , l which describes the finite set of spherical harmonics
coefficients for the surface Γj up to degree $.

3. The Forward Problem
As in conventional pixel based reconstruction we assume multiple sources ps, s = 1, . . . , S and detectors md,

d = 1, . . . , M , located at the surface ∂Ω. During the experiment, light is emitted from one source at a time
and the photons leaving the domain are collected at all the detectors. We denote by gs,d the measurements
which corresponds to detector d and source s. The combined measurements for a source s are denoted by gs. A
boundary integral formulation is used to simplify the discretisation of the volume of the domain Ω to that of the
interfaces Γj of the disjoint regions that comprise Ω. The shapes and locations of the boundaries are described
by finite sets of shape coefficients γ = {γj}. The forward problem uses a Boundary Element Method (BEM) to
discretise the mapping from the shape coefficients {γj} and the optical parameters values {Dj , µa,j} to the data
g = M(γ)Φ on the surface ∂Ω, where M denotes the linear measurement operator which typically takes point
evaluations of the fields Φ at few discrete points of the surface ∂Ω. The inverse problem in this setup amounts
to finding the representation {γj} and the values {Dj , µa,j} from observed or simulated measurements g.
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Discretising our forward problem (2)–(4) by the so-called ‘collocation Boundary Element Method’ [4, 8] we
construct a linear matrix equation of the form

T(γ)f = q (7)

The matrix T(γ) (which depends in a nonlinear way on the shape parameters γ) takes the form of a dense
non-symmetric block matrix. The corresponding system is solved using a preconditioned GMRES solver. To
relate the BEM approach to the forward model, we introduce the linear measurement operator M. Then we
have

gs = Ks(γ, D, µa) = MT−1(γ)qs, (8)

where gs are the measured data at the discrete points md, d = 1, . . . , M corresponding to the source qs, and
Ks(γ, D, µa) denotes the nonlinear forward operator mapping unknown shape parameters to the corresponding
measurements [3]. In the following we will omit the subindex s in the notation for simplicity.

4. The Shape Inverse Problem
Starting from a geometric configuration defined by the set of shape coefficients (γ0), we will try to search for

the set (γ∗) that minimises the distance between computed data K(γ, D, µa) and given data g. Our approach
will be a cost minimisation procedure:

find γ∗ so that Ξ(γ∗) = min
γ
‖g −K(γ,D, µa)‖2 (9)

A typical way to minimise such a cost function is a Newton-type method, [7], where we search for a minimum
for Ξ(γ) by iterations of local linearisation and Taylor expansion around the current estimate γk as

γk+1 = γk + (JT
k Jk + Λ)−1JT

k (g −K(γk, D, µa)). (10)

Λ is a Levenberg-Marquandt control term [5]. In our implementation, we take Λ to be the identity.
The modified Newton method (10) for the minimisation of the residual (9) produces the descent direction

in the parameter space by providing a step δγk = γk+1 − γk. In practice, moving Ξ(γ) to the full step length
δγk could lead the residual far from the actual minimum. A quadratic fit line search method is introduced in
order to avoid detours in the downhill direction and speed up the optimisation.

5. Construction of the Jacobian
One of the key elements in the implementation of the optimisation scheme (10) is the calculation of the Jaco-

bian J = ∂K(γ,D,µa)
∂γ of the forward operator K with respect to the shape coefficients γ. Since the measurement

operator M is linear, this amounts essentially with (8) to calculating ∂T(γ)−1

∂γi
in an efficient way. In our numer-

ical calculations we have implemented a semi-adjoint scheme for calculating these expressions. Assume that the
matrix T is invertible and differentiable with derivative ∂T(γ)

∂γi
. Differentiation of the identity T(γ)−1T(γ) = I

yields by the product rule
∂T(γ)−1

∂γi
= −T(γ)−1 ∂T(γ)

∂γi
T(γ)−1 (11)

Denote fs = T(γ)−1qs(γ) the solution vector for the sth source vector by qs(γ), and let ed = [ 0 0 · · · 0 1 0 · · · 0 0 ]
the standard dth unit vector where the value 1 is at dth position. Then, the measurement at the dth detector
corresponding to source s can be written as

gsd = eT
d · fs = eT

d · T(γ)−1 · qs(γ) (12)

By differentiation with respect to γi and using the identity (11) we get

∂gsd

∂γi
= eT

d · T −1(γ) · ∂ T(γ)
∂γi

· T −1(γ) · qs(γ) + eT
d · T −1(γ) · ∂qs(γ)

∂γi
(13)

Denoting furthermore

f+
d = eT

d · T−1(γ), Qs = T−1(γ) · ∂ qs(γ)
∂γi

(14)
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Figure 2: Recovery of inhomogeneity shape from OT measurements on the surface with known a-priori optical
parameters. (left) the target; (right) red: the initial guess, green: the reconstructed shape.
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Figure 3: Relative data error, ‖g−1(g −K(γk, D, µa))‖ on the left, and parameter space error
∑

n ‖(γtarget,n −
γk,n)‖2, on the right.

we finally arrive at
∂gsd

∂γi
= f+,T

d · ∂ T(γ)
∂γi

· fs + eT
d ·Qs. (15)

We notice that ∂gsd

∂γi
are the actual entries of the Jacobian J. The derivative of the BEM system matrix T with

respect to the geometrical parameter γi is now done using a finite difference method

∂ T(γ)
∂γi

=
T(γ1, · · · , γi + εi, · · · , γn)− T(γ1, · · · , γi, · · · , γn)

εi
(16)

The practical choice of εi requires a trade-off between the mathematical accuracy of the derivative approximation
and the computer roundoff error consideration [7]. In our case it is chosen empirically as 10−4γi.

6. Results from 3D Simulations
In our experimental setup, a geometric model for an infant’s head (Figure 1) is created and treated as a

homogeneous domain with an embedded randomly shaped inhomogeneity, which we try to recover. The optical
parameters chosen for the homogeneous background are µa = 0.01 cm−1 and µs = 1 cm−1, and for the internal
region Ω2 we have µa = 0.05 cm−1 and µs = 2. cm−1. The inhomogeneity’s surface is described by 16 spherical
harmonic coefficients γ0 for each cartesian coordinate x, y, z. This defines a parametric surface using up to the
3rd degree spherical harmonics. A regular mesh with 48 elements and 98 nodes is mapped onto that surface to
create the discrete approximation necessary for the BEM calculation, see Figure 2.

Using this geometric setup, we assign 20 sources and 20 detector positions at the surface of the head . The
modulation frequency on the sources in set to 100 MHz. Synthetic data are then collected at the 20 detectors
using the forward model K(γ0) with one source illuminated at a time. We split this data into real and imaginary
parts of its logarithm to get a vector g ∈ R800. Gaussian random noise with a standard deviation of 1% of the
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measured signal is added to these data. As the initial guess for the reconstruction we select a closed surface
centred at a random position. In this case, we use 9 parameters for each direction in a 2nd degree spherical
harmonics description. This choice leads to a search space of dimension 3 × 9 = 27. The solution follows the
residual minimisation technique described above. The reconstructed boundary is displayed in Figure 2. Figure 3
shows the relative data error ‖g−1(g−K(γk, D, µa))‖ versus iteration index k on the left hand side. On the right
hand side of this figure, a measure for the quality of the approximation of the shape is displayed. Due to the
larger number of coefficients γ0 used for the construction of the target than for the definition of the evolution
shape γk, we define γtarget to be the set of spherical harmonics coefficients that define the target truncated up
to the degree used for the evolution. So the residual of Figure 3 is chosen to be

∑
n ‖(γtarget,n − γk,n)‖2, with

n summing up to the degree of spherical harmonics used for the evolution shape.
As can be seen, the location and the approximate shape of the simple 3D homogeneous region can be

recovered with good accuracy from noisy data. The minimisation of the least squares functional has completed
successfully with the distance norm becoming 33 times smaller that the initial value after only 5 iterations. On
the other hand, the distance between the shape coefficients shows good convergence if we take into account that
a different degree of spherical harmonics was used for the creation of the simulated data than for the evolving
shape during the reconstruction.

7. Conclusion
In the paper we have proposed a novel reconstruction scheme for a shape based three dimensional inverse

problem in DOT. In our method, the search space for the solution of the inverse problem is defined in terms
of a spherical harmonic expansion of the unknown region surfaces which are not restricted being star-shaped.
Doing so we incorporate in our scheme an implicit regularisation, where the regularisation parameter is the
degree of spherical harmonics used for representing the surfaces. A semi-adjoint formulation of the parameter-
or shape-sensitivities has been derived. In our numerical experiments, using the semi-adjoint form, we have
demonstrated that our scheme is able to reconstruct in a stable and efficient way low-parametric approximations
of more complicated shapes from few given data.
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Detection of Inclusions in the Radiative Transfer Regime

G. Bal
Columbia University, USA

Inclusions can be modeled as variations in the constitutive parameters of radiative transfer equations for the
energy density of waves propagating in highly heterogeneous media. In the practically useful regime where the
inclusions have a small volume compared to the overall size of the system, we present asymptotic expansions
that characterize the influence of the inclusions on available measurements and show how these formulas may be
used towards detection and imaging. These asymptotic formulas are also compared with numerical simulations
of the wave equation, where the inclusions are modeled as either void areas (where fluctuations are suppressed)
or perfectly reflecting objects. Careful numerical simulations of wave equations in two space dimensions over
domains of size comparable to 500 wavelengths allow us to assess the volume of the inclusions that can be
detected and imaged from the available measurements. This is joint work with Olivier Pinaud.
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A Parametric Level-set Approach to Tomographic Reconstruction

A. B. Tarokh
Brigham and Women’s Hospital, USA

E. L. Miller
Northeastern University, USA

We consider an approach to the tomographic reconstruction problem based on a parametric form of the level-
set method to describe the geometry of a 3D object. Inspired by the flexibility and simplicity of linear expansion
methods that are commonplace in the signal processing and applied mathematics literatures, our method makes
use of such expansions in the description of the level-set function. Given a fixed set of basis functions, the
level-set function is described using a linear combination of these basis functions, with the expansion coefficients
treated as unknowns. Our formulation admits the use of a wide range of basis functions, and we provide several
specific examples of bases to demonstrate the method’s flexibility (polynomial, sinusoidal, and Gaussian). A
non-linear optimization method is developed for determining the optimal values of the unknowns. In addition
to the level-set function expansion coefficients, we also estimate the space-varying textures of the anomaly and
background. Modelling these features using linear expansions (similarly to the level-set function), we include the
corresponding expansion coefficients in the non-linear optimization routine. Hence, our algorithm simultaneously
optimizes the structure of the anomaly as well as the space-varying textures of the anomaly and background.
Finally, to enforce an overall smoothness of the reconstructed target, we include in our optimization process a
regularization term that penalizes the surface area of the target.

Our geometric approach to the tomographic imaging problem is an efficient, parametric technique that
sequentially “evolves” the two-dimensional surface that bounds the modelled anomalous region of interest. The
tomographic flow, or surface evolution, is affected through iterative cost-decreasing steps using a gradient-based
evolution of the parameters that define the surface as well as the textures. The cost functional is defined as a
typical log likelihood functional arising from the assumed Gaussian nature of the noise corrupting the observed
data. The key attractive features of our approach are as follows: 1) Our model admits the presence of multiple
spatially-separate anomalous regions in the medium. 2) We employ an appropriate regularization penalty to
improve the robustness of the algorithm in the presence of noise. This penalty has the effect of encouraging a
smooth reconstructed shape. 3) The simple characterization of the object in terms of a low number of parameters
lends itself to efficient computational implementation.

The flexibility afforded by the use of basis expansion functions requires a method for determining those
that should in fact be used in the reconstruction given a large dictionary of potions. This would imply that we
simultaneously optimize over a vector of coefficients equal in cardinality to the dictionary of basis function, which
is computationally intractable even for modestly-sized dictionaries. Hence, we seek to retain the advantages of
having a large dictionary of basis functions for representing the level-set function corresponding to our anomalous
region, while maintaining an overall tractable optimization. To this end, we introduce a greedy algorithm for
selecting a small set of basis functions that yield improved cost, where the cost functional is retained from the
non-adaptive case above.

We validate our approach through extensive numerical studies on simulated noisy data generated using X-ray
and diffuse optical tomographic (DOT) models.
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Shape Reconstruction in Diffuse Optical Tomography Using the
Radiative Transfer Equation and Level Sets

O. Dorn and M. Moscoso
Universidad Carlos III de Madrid, Spain

We consider Diffuse Optical Tomography as an inverse problem for the radiative transfer equation in 2D. The
goal is to find and characterize small objects embedded in a heterogeneous medium. We assume that we know
certain characteristics of the background medium, as for example average values of the absorption and scattering
coefficient, but small fluctuations of a reasonable amount are assumed to be unknown. The optical parameters
inside the embedded objects (e.g., tumors or other anomalies) are assumed to be significantly different from the
background values and constant, but their values (as well as the shapes of the objects) are unknown. The region
of interest is surrounded by a band of clear fluid (e.g., CFL), which is assumed to be non-scattering or very
low-scattering. The data consist then of the time-dependent outgoing photon flux at discrete receivers located
at the boundary of the domain. A level set strategy is employed in order to find the topology, the shapes as
well as the contrast of the unknown inclusions. Several numerical examples are presented which demonstrate
the performance of the method in various situations.
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Time-reversal and Signal Subspace Methods for Imaging and
Inverse Scattering of Multiply Scattering Targets

E. A. Marengo and F. K. Gruber
Northeastern University, USA

In this work the inverse scattering problem of estimating the locations and scattering strengths of a number
of multiply scattering point targets in the near or far field from single-snapshot active antenna array data is
investigated with the aid of two signal subspace approaches: Time-reversal-based methods with an emphasis
on time-reversal multiple signal classification (MUSIC) and a new signal subspace method developed in this
work that is based on parameter search in high-dimensional parameter space. The second approach corresponds
under additive white Gaussian noise to the maximum likelihood (ML) estimator for the target positions in the
(distorted wave) Born approximated case. The approach also corresponds to the ML estimator for the multiple
scattering case so long as the associated forward and inverse problems are treated in terms of an equivalent
two-point scattering potential matrix or tensor instead of the one-point scattering potential function or the
target reflectivities.

The methods are comparatively investigated, and it is found that for weakly interacting targets whose
collective scattering is describable by the Born approximation the ML method outperforms the time-reversal
approach in number of localizable targets, being it possible, e.g., to locate up to N(N +1)/2−1 or N2−1 targets
using coincident or non-coincident arrays of N transmitters and receivers, respectively, instead of the time-
reversal limit of only up to N−1 targets. The number of targets that are in principle localizable using the time-
reversal MUSIC approach remains unchanged under Born-approximable versus non-Born-approximable (exact,
multiple scattering) conditions. On the other hand, if multiple scattering is significant then the high-dimensional
search method yields a less dramatic advantage over the time-reversal approach in number of localizable targets.
The high-dimensional signal subspace method is also found to yield better resolution performance at the expense
of higher computational demand.

A new explicit formula (a non-iterative algorithm) to calculate the scattering strengths once the target
locations have been determined is also developed which holds even in the nonlinear regime of multiply scattering
targets. The approach is valid so long as the conditions for applicability of the time-reversal approach for
generally non-coincident arrays are met, in particular, M ≤ min(Nt, Nr) and M < max(Nt, Nr) where Nt and
Nr are the number of transmitters and receivers, respectively, and M is the number of point targets.

The final part of the presentation includes extensions of the previous algorithms for the case of extended
targets where instead of a single Green function vector or propagator per target there is an effectively finite-
dimensional subspace of such propagators. The paper includes computer-simulated validations of the theory
which comparatively address the performance of the methods.

The work reported in this presentation expands previous work co-authored by the present authors on time-
reversal imaging and inverse scattering of multiply scattering point targets, with the main contributions of
the present work residing in the development of a non-iterative formula for the full nonlinear inverse scattering
reconstruction and in the comparative investigation of time-reversal in the context of alternative signal subspace
approaches (the ML approach included) for the associated target localization problem with active arrays. This
work also goes a step beyond in considering the generalization of these developments to extended targets.

REFERENCES

1. Gruber, et al., J. Acoust. Soc. Am., Vol. 115, No. 6, 3042–3047, June 2004.
2. Devaney, et al., J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005.



84 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

Approximation of the Scattering Coefficients for a
Non-RAYLEIGH Obstacle

G. F. Crosta
Università degli Studi Milano - Bicocca, Italy

Let Ω ⊂ <2 be a star shaped obstacle with smooth boundary, Γ . Let u denote the incident scalar plane
wave and v the scattered wave complying with (u + v)|Γ = 0 and the SOMMERFELD radiation condition.
Let λ denote a pair of indices and {uλ} be the family of real wave functions, which is linearly independent
and complete in L2(Γ ), provided k2 /∈ σ[−∆D] (the wavenumber squared is not an eigenvalue of the interior
DIRICHLET LAPLACE operator). The scattering coefficients are defined by fλ = −(i/4)〈uλ|∂N (u+v)〉, where
∂N (.) is the outward normal derivative on Γ and 〈.| .〉 denotes the inner product in L2(Γ ).

If L denotes the approximation order and Λ[L] the related set of indices, approximate scattering coefficients
{p(L)

λ } can be introduced
p
(L)
λ = −(i/4)〈uλ|∂Nu + (∂Nv)(L)

2 〉 (1)

with
(∂Nv)(L)

2 =
∑

µ∈Λ[L]

c(L)
µ ∂Nvµ. (2)

Here F2 = {∂Nvµ} is the family of normal derivatives of outgoing waves {vµ}, which is unconditionally complete,
and {c(L)

µ }, µ ∈ Λ[L], are suitable expansion coefficients. Let W ≡ {wµ} denote a family of functions such that

wµ = (1/2)∂N [r]vµ + (i/4)
∫

Γ

∂N [r]H
(1)
0 [kR]∂N [ρ]vµdΓ[ρ], (3)

where R = |r− ρ|.
The following results can be shown to hold.

1) The family W is linearly independent and complete in L2(Γ) provided k2 /∈ (σ[−∆D]∪σ[−∆N ]) i.e., k2 is
neither an eigenvalue of the interior DIRICHLET nor of the interior NEUMANN LAPLACE operators.

2) The coefficients {c(L)
µ }, which form the vector c(L) of card [Λ[L]] components, solve the well-posed algebraic

system
W(L) · c(L) = g(L), (4)

where W(L) = [〈wλ|wµ〉] is the GRAMian of {wµ} and g(L) = [〈g|wµ〉] is a vector of known terms obtained
from

g = (1/2)∂N [r]u− (i/4)
∫

Γ

∂N [ρ]u∂N [r]H
(1)
0 [kR]dΓ[ρ]. (5)

3) Finally, an error estimate for ‖ ∂Nv− (∂Nv)(L)
2 ‖2L2(Γ) can be provided in terms of the smallest eigenvalue

of a double layer acoustic potential.

RAYLEIGH’s hypothesis is nowhere required i.e., both F2 and W only have to be linearly independent and
complete.
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Three Satellite Geolocation from TDOA and FDOA
Measurements

B. A. Kemp, T. M. Grzegorczyk, B.-I. Wu, and J. A. Kong
Massachusetts Institute of Technology, USA

Geolocation refers to the localization of an emitter from measurements by passive receivers (satellites) at
known locations. We consider the problem of three satellites used for determining the location of an elec-
tromagnetic source that is known to be on or near the surface of the Earth. Typically, the multilateration
solution is obtained from time-difference-of-arrival (TDOA) measurements. In this configuration, one of the
three satellites is designated as the reference such that two TDOA equations are obtained by subtracting the
time-of-arrival (TOA) measurements of the reference satellite from the TOA measurement of the non-reference
satellites. Therefore, the three satellite case is underdetermined for the three dimensional (3D) localization
problem (i.e., there are two equations and three unknowns u = [x, y, z]T ). The introduction of an altitude
constraint, for example restricting the source location to the surface of the Earth, yields one additional equation
such that the problem is critically determined. However, the true altitude of the source may not be known
exactly due to variations of the Earth’s surface from sea level. When there is relative motion between the source
and receivers, the Doppler shift gives two frequency-difference-of-arrival (FDOA) equations. Thus, there are four
(two TDOA and two FDOA) equations that can be used to determine the three source location coordinates.
The three satellite geolocation problem is then overdetermined. We present a solution to the three satellite
geolocation problem based on iterative linearization of the TDOA and FDOA equations. We show that the
resulting iterative maximum likelihood estimator (ML) achieves the Cramer-Rao Lower Bound (CRLB) in low
measurement noise, but the likelihood of nonconvergence increases with measurement noise. Furthermore, we
demonstrate that introduction of a source altitude constraint decreases the estimator variance below the un-
constrained CRLB and increases the numerical robustness for higher measurement noise. However, it is shown
that error in the altitude constraint projects bias onto the estimated source location vector.
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Consider the following scattering scenario. An unidentified scatterer Qi from a known class Q is moving on
a trajectory ΓQi

(t) in R3 and illuminated in the Fraunhofer zone by a class of sources T moving on trajectories
ΓTk

(t). The sources radiate distinct rest-frame signals ΦTk
(t).π̂Tk

(θ, φ) which are scattered by Qi according to
the scattering matrix S̃Qi(~ksc,~kinc) in Qi’s rest-frame. Here π̂Tk

(θ, φ) represents the polarisation state of the
signal radiated by Tk in its local rest-frame direction (θ, φ).

A class of (noisy) receivers R moving on trajectories ΓRj
(t) sample the scattered signals

~Zsc ≡ G̃0(Rj , Qi)S̃Qi
G̃0(Qi, Tk)ΦTk

π̂Tk

and the direct signals
~Zdir ≡ G̃0(Rj , Tk)ΦTk

π̂Tk

where G̃0 is the free space vector Green’s function, in an obvious shorthand notation. The objective is to identify
Qi and ΓQi(t) from the receiver outputs.

In the general case, the receivers R measure Z̃sc and Z̃dir, from which the required parameters are to be
estimated. But suppose each Rj is able to sample only a single polarisation of the fields incident upon it,

Zsc
proj ≡ ~Zsc · π̂Rj and Zdir

proj ≡ ~Zdir · π̂Rj

The question arises, to what extent are class identification and parameter estimation compromised? In this
paper we address the question in the context of passive radars operating in the HF and VHF bands and derive
quantitative measures of the value of polarimetric information for several geometries of interest.


