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Conformal Meshing in FFT Based EM Analysis

J. C. Rautio
Sonnet Software, Inc., USA

Shielded planar EM analysis is based on the FFT. This means it has extremely high accuracy and dynamic
range (due to the complete absence of numerical integration), but it also analyzes a circuit based on a fine
underlying FFT mesh. While the FFT mesh can be even finer than the pixels on a typical computer screen, it
does result in more difficulty in analyzing non-Manhattan geometries. Conformal mesh eliminates this problem
for a broad class of non-Manhattan geometries including curved transmission lines, like circular spiral inductors.
The nature of this conformal meshing is described and examples are given. Complicated circuits with curving
transmission lines can now be analyzed quickly even if they can not be analyzed at all (to the same degree of
error) on any other EM tool of any kind.
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An Analysis of Coaxial Line Slot antenna for Hyperthermia
Treatment by Spectral Domain Approach

T. Nakata, H. Yoshitake, K. Wakino, Y.-D. Lin, and T. Kitazawa
Ritsumeikan University, Japan

Abstract—An extended spectral domain approach (ESDA) is applied to evaluate the scattering parameter
of laterally slotted coaxial antenna for hyperthermia treatment. The results calculated by ESDA are in good
agreement with that by Finite Element Method (FEM) simulation. Computational labor of the present method
is far lighter than that of FEM, and the method is suitable for the iterative computation that is required for
the optimization of antenna design. The present method can afford to consider the effect of the metallization
thickness in the outer conductor.

1. Introduction
In the fields of medical application, microwave is utilized for various purposes in the examining and treatment

equipment [1]. The characteristics of coaxial line slot antenna for microwave hyperthermia applicators have been
investigated [2]. This treatment thrusts a coaxial line applicator into the affected cancer part, heats up selectively
the affected area and fixes the cancer cells. The currently used coaxial line applicator is not optimized in the
point of view of impedance matching between applicator and human tissue, so that the radiation efficiency into
the affected area is not good. In this paper, we analyze the radiation characteristics of applicator using efficient
simulation technique and proposed the optimized design that presents high radiation efficiency.

The formulation procedure utilized in this paper is based on the extended spectral domain approach (ESDA).
This procedure can afford to consider the effect of thickness of outer conductor of coaxial cable. The results
calculated by ESDA are compared with that by FEM simulation and excellent agreement have been obtained
between both results.

Figure 1: Schematic structure of coaxial line slot an-
tenna.

Figure 2: Aperture electric fields.

2. Theory
Figure 1 shows the schematic structure of coaxial line slot antenna whose outer conductor has finite thickness

t and has a ring slot of W in width cut laterally near the termination. A perfect electric conductor (PEC) sheet
is introduced for convenience of analysis in the position apart g from the tip of coaxial line. It is assumed that
the relative complex permittivity of material in each region is εr1, εr2, εr3, εr4, respectively. The radiation char-
acteristics of coaxial line slot antenna are analyzed based on the extended spectral domain approach (ESDA) [3].
In the procedure, first the aperture fields are introduced in the aperture of outer conductor designated as ea1

z (at
ρ = b), and ea2

z (at ρ = b + t) (Fig. 2), respectively. Whole analytic space is divided into four regions, that
is, region I (a ≤ ρ ≤ b, −∞ ≤ z ≤ 0), region II (b ≤ ρ ≤ b + t, −c − w/2 ≤ z ≤ −c + w/2), region III (
b + t ≤ ρ ≤ r, −∞ ≤ z ≤ d + g), and region IV (0 ≤ ρ ≤ b + t, d ≤ z ≤ d + g), as shown in Fig. 1. These
regions can be treated independently resorting to equivalence theorem, and the electromagnetic fields in each
region are Fourier transformed with respect to the z-direction. When the dominant TEM mode

Eρ =
E0

ρ
exp(−jk1z), Hφ =

√
εr1ε0
µ0

E0

ρ
exp(−jk1z) (a ≤ ρ ≤ b) (1)

enters the coaxial line slot antenna, there exist the incident and the scattered waves in region (I) and total
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Figure 3: Edge singularities in aperture fields. Figure 4: Convergence of the reflection coefficients
with respect to number of basis functions. a =
0.24mm, b = 0.8 mm, c = 2.5mm, d = 5.0mm,
w = 2.0 mm, t = 0.1mm, εr1 = 2.1 − j0.0005,
εr2 = εr3 = εr4 = 43− j12.38, f = 2.45GHz.

electromagnetic fields are expressed by Fourier integrals as,

E(I)
ρ (ρ, z) = −j

2E0

ρ
sin(k1z) +

√
2
π

∫ 0

−∞
Ẽ(I)

ρ (ρ) sin(α1z)dα1,

E(I)
z (ρ, z) =

√
2
π

∫ 0

−∞
Ẽ(I)

z (ρ) cos(α1z)dα1,

E
(I)
φ (ρ, z) =

√
εr1ε0
µ0

2E0

ρ
cos(k1z) +

√
2
π

∫ 0

−∞
H̃

(I)
φ (ρ) cos(α1z)dα1 (2)

Similar expressions are available in region (III). The electromagnetic fields in regions (II) and (IV) are expressed
by Fourier series instead of Fourier integrals to satisfy the boundary conditions on the side walls. Fields in regions
(II) are expressed as

E(II)
ρ (ρ, z) =

∞∑
n=1

Ẽ(II)
ρ (ρ) sin α2(z + c +

W

2
), E(II)

z (ρ, z) =
∞∑

n=0

Ẽ(II)
z (ρ) cos α2(z + c +

W

2
),

H
(II)
φ (ρ, z) =

∞∑
n=0

H̃
(II)
φ (ρ) cos α2(z + c +

W

2
), α2 =

nπ

W
. (3)

And similar expressions are available in region (IV).
These expressions of electromagnetic fields are substituted into Maxwells field equations. The general solu-

tions of the transformed field equations can be expressed in terms of Bessel functions and Neumann functions
in regions (I), (II) and (IV), and in terms of second kind of Hankel functions in region (III) as

H̃
(i)
φ (αi; ρ) = A(i)J1(ξiρ) + B(i)N1(ξiρ) in regions(I), (II) and (IV) (4)

H̃
(III)
φ (α3; ρ) = C(III)H

(2)
1 (ξ3ρ) in regions(III) (5)

where A(i), B(i) and C(III) are unknown constants and ξi =
√

ω2εriε0µ0 − α2
i . These unknown constants can

be related to the aperture fields ea1
z , ea2

z and eb
z by applying the continuities of electric fields at interfaces. Then

the electromagnetic fields in each region are expressed in terms of the aperture fields, for example,

H
(I)
φ (ρ, z) =

√
εr1ε0
µ0

2E0

ρ
cos(k1z) +

∫ −c+W/2

z′=−c−W/2

Y (I)(ρ, z|ρ′ = b, z′)ea1
z (z′)dz′ in region(I) (6)

where Y (I) is the Green’s function and it can be derived easily in the transformed domain. Similar expressions
are derived in other regions, which relate the fields to the involved aperture fields. The remaining boundary
conditions, i. e., the continuity of the magnetic field at the interfaces between adjacent regions, are applied to
obtain a set of the integral equations on the aperture fields. The aperture fields can be determined by applying
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Figure 5: Convergence of reflection coefficients with
respect to the distance of g. a = 0.24mm, b =
0.8mm, c = 2.5mm, d = 5.0mm, w = 2.0mm,
t = 0.1mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43− j12.38, f = 2.45 GHz.

Figure 6: Gap discontinuity in coaxial line.

Figure 7: Phase variation of the reflection versus the
frequency. a = 3.10mm, b = 7.14mm, d = 0.57mm,
εr1 = εr2 = 2.1.

Figure 8: Frequency dependency of reflection coef-
ficients of coaxial line slot antenna. a = 0.24mm,
b = 0.8 mm, c = 2.5 mm, d = 5.0mm, w = 2.0mm,
t = 0.1mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43− j12.38.

the Galerkin’s procedure to these coupled integral equations, and the scattering parameter (complex reflection
constant) S11 are obtained by taking the inner product between the aperture field ea1

z and the eigen function of
coaxial line.

3. Numerical Procedure and Result
The numerical procedure is based on Galerkin’s procedure, and the unknown electric aperture fields ea1

z , ea2
z

and eb
z are expanded in terms of the appropriate basis functions,

ei
z(z) =

N∑

k=1

ai
kf i

k(z) (7)

The basis functions f i
k(z) are chosen taking the edge singularities near conductor edge into consideration (Fig. 3),

fa1
k (z) = fa2

k K(z) =
Tk−1{ 2

W (z + c)}√
1− { 2

W (z + c)}2
, f b

k(z) =
T2(k−1){ 1

g (z − d− g)}√
1− { 1

g (z − d− g)}2
(8)

where Tk(x) is Chebyshev polynomials of the first kind.
Preliminary computations are carried out to investigate the convergence of the reflection coefficients with

respect to the number of basis functions. This method was settled by a little number of basis functions as shown
in Fig. 4, and N = 8 is used in the following computations. Fig. 5 examines the effect of the fictious perfect
electric conductor sheet placed at distance g ahead the tip of coaxial line slot antenna (Fig. 1). The influence
of the conductor sheet decreases rapidly with g, and the sufficient spacing g = 40mm is chosen in the following
simulations.
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3
Figure 9: SAR distribution of coaxial line slot an-
tenna.

Figure 10: Variation of the reflection versus the slot
position. a = 0.24mm, b = 0.8 mm, w = 2.0 mm,
t = 0.1mm, εr1 = 2.1 − j0.0005, εr2 = εr3 = εr4 =
43− j12.38, f = 2.45GHz.

To author’s knowledge there is no published theoretical result to permit direct comparison with the present
method for the reflection characteristics of coaxial line slot antenna. We apply the present method to analyze
the gap discontinuity in the inner conductor of shorted coaxial line (Fig. 6) to show the validity of the method.
The formulation procedures are similar to those explained above and also the similar basis functions (8) are used
in the numerical computation. Fig. 7 shows the phase variation of the reflection coefficient versus the frequency,
comparing the results by mode-matching method [4] and Marcuvitzs analytical results [5]. Our results are in
good agreement with [5] for wide frequencies.

Figure8 shows the frequency dependency of reflection coefficients of the coaxial line slot antenna (applicator)
thrust into the liver. The figure includes the values by FEM for comparison, and excellent agreement is observed
between both methods over wide frequencies. Fig. 9 shows the SAR distribution calculated by both methods
at f = 2.45GHz.

The present method is numerically efficient and is suitable for the optimization of the coaxial line applicator,
which requires the iterative computations. Fig. 10 shows the optimization of coaxial line by changing a slot
position when the operation frequency is 2.45 GHz. The optimal value at this condition takes the reflective
coefficient 0.32 at c − w/2 = 1.5mm and d = 5 mm. This figure also includes the values by FEM and again
good agreement is confirmed, although FEM calculations are time consuming and are presented only at discrete
frequencies.

4. Conclusion
In this paper, we proposed the novel analyzing technique for the coaxial line slot antenna by ESDA, and

carried out extraction of scattering parameters. This method can take the thickness effect of outer conductor
into consideration. This method also secures the high accuracy by considering the singularities of fields near
the conductor edge properly. The computational labor of the new method is far lighter than that of FEM, so
that novel method is suitable for the time consuming iterative computation such as optimization procedure of
antenna design.

REFERENCES
1. Sterzer, S., “Microwave medical devices,” IEEE Microwave Magazine., Vol. 3, 65–70, March 2002.
2. Saito, K., Y. Hayashi, H. Yoshimura, and K. Ito, “Heating characteristics of array applicator composed of

two coaxial-slot antennas for microwave coagulation therapy,” IEEE Trans. Microwave Theory Tech., Vol.
48, 1800–1806, November 2000.

3. Kitazawa, T., “Nonreciprocity of phase constants, characteristic impedances and conductor losses in planar
transmission lines with layered anisotropic media,” IEEE Trans. Microwave Theory Tech., Vol. 43, 445–451,
February 1995.

4. Eom, H. J., Y. C. Noh, and J. K. Park, “Scattering analysis of a coaxial line terminated by a gap,” IEEE
Microwave Guided Wave Lett., Vol. 8, 218–219, June 1998.

5. Marcuvitz, N., Waveguide Handbook, New York: McGraw-Hill, 178, 1951.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 53

Spectral Domain Analysis of Coupled Microstrip Using
Spheroidal Wave Functions with Edge Conditions

C. A. Carter
Stevens Institute of Technology, USA

An analysis of coupled microstrip transmission lines using spheroidal wave functions and the spectral domain
method will be presented. In the spectral domain method, the electromagnetic field equations and boundary
conditions are formulated in the spectral, or Fourier transform, domain. This formulation is used to derive an
equation that expresses the Fourier transform of the electric field in terms of the current distribution on the
microstrip. Galerkin’s moment method is then applied to yield a system of equations that can be used to solve
for unknown propagation constants as a function of frequency.

The current distribution on microstrip is modeled as an expansion of known basis functions with unknown
coefficients. Walsh functions, sinusoidal functions, sinusoidal functions with edge conditions and Chebyshev
polynomials with edge conditions have been utilized as basis functions in prior research. Functions that incor-
porate the microstrip edge conditions more effectively model the current on the microstrip and require fewer
terms in the current expansion. Previous research at Stevens Institute of Technology has utilized spheroidal wave
functions to model the current distribution on single microstrip transmission lines. These functions were shown
to model the current over a broad frequency range and required fewer expansion terms than other previously
used basis functions.

For this presentation, the work carried out utilizing spheroidal wave functions in the analysis of single
microstrip lines is extended to coupled microstrip. A brief overview of the theory of spheroidal wave functions will
be included but the primary focus will be on practical issues of computation related to their use in the analysis
of both single and coupled microstrip. Chebyshev polynomials with edge conditions have previously been used
to model the current on coupled microstrip over a large frequency range. Preliminary results demonstrate that
fewer spheroidal wave functions than Chebyshev polynomials are needed to compute the propagation constant
as a function of frequency. Propagation constants computed for a range of frequencies and strip separation
values are investigated.
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Application of the Space Domain MoM Technique to the Analysis
of Planar Guiding Structures

M. B. Ben Salah, M. Souden, A. B. Kouki, and A. Samet
Ecole Polytechnique de Tunisie, Tunisia

Integral equation methods are widely recognized as efficient techniques for studying the propagation char-
acteristics of planar structures. In these techniques, the Method of Moments in the spectral domain is typically
used since the Green’s functions can be obtained in closed form. This approach has been shown to be quite
effective for the modeling of planar guiding structures and is behind several empirical models used today in
many commercial microwave CAD tools. Nevertheless, this approach requires the evaluation of infinite integrals
with oscillating and slowly decaying integrands, for open structures, and infinite series for shielded ones. To
circumvent this problem, a space domain formulation of the Method of Moments, widely used to characterize
arbitrary planar structures and discontinuities, is proposed for the analysis of guiding structures. The closed
form expressions of the Green’s functions for the vector and scalar potentials in the space domain are found
through the application of the Generalized Pencil of Functions (GPOF) method to the one dimensional case. In
such a case, we show that the passage from the spectral to the space domain results in a simplified closed form
expression in terms of Bessel functions of the second kind. This new formulation is applied to a microstrip line
and the results are compared to other models.
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On the Limitations of the Space Domain Formulation of the MoM
Method for Planar Circuits

K. Kochlef, A. B. Kouki, and A. Samet
Ecole Polytechnique de Tunisie, Tunisie

The Method of Moments (MoM) is arguably the most well suited technique for the analysis of planar circuits.
This technique has been traditionally formulated in the spectral domain, since it is only in this domain that
the Green’s functions can be determined exactly. However, the spectral domain formulation suffers from several
limitations, particularly for open structures, that make its implementation and use difficult and the required
computational resources high. In light of this, substantial research effort has been invested in developing a
space domain alternative whereby an approximate space domain Green’s function is derived from its spectral
domain counterpart and used in space domain formulation of the MoM technique. Therefore, the accuracy of
this technique depends on that of the space domain Green’s function.

In this paper, we present a systematic investigation of the accuracy of the space domain MoM technique
applied to single layer planar circuits with the aim of establishing its limitations and determining its zones of
applicability. The study covers a wide range of parameters, including frequency, cell spacing, dielectric constant
values and substrate height. We also examine the impact of varying the parameters of the generalized pencil
of function (GPOF) technique, used to determine the space domain Green’s function, on the precision of the
technique and its zones of applicability. Finally we discuss potential remedies to overcome the limitation of the
space domain techniques.
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Critical Study of DCIM, and Development of Efficient Simulation
Tool for 3D Printed Structures in Multilayer Media

M. I. Aksun and T. Onal
Koc University, Turkey

Abstract—Since the discrete complex image method (DCIM) has been widely used in conjunction with the
Method of Moments (MoM) to efficiently analyze printed structures, some lingering issues related to the im-
plementation of DCIM and their brief clarifications are first reviewed. Then, an efficient and rigorous electro-
magnetic simulation algorithm, based on the combination of MoM and DCIM, is proposed and developed for
the solution of mixed-potential integral equation (MPIE) for printed structures with multiple vertical strips in
multilayer media. The algorithm is possibly the most efficient approach to handle multiple vertical conductors,
even spanning more than one layer, in printed circuits.

1. Introduction
Spatial-domain method of moments (MoM) is a widely used technique for the solution of mixed-potential

integral equation (MPIE) for printed geometries in multilayer planar media [1], thanks to the introduction
of an efficient closed-form approximation method [2] and its improved versions of the spatial-domain Green’s
functions [3, 4]. This approach, known as discrete complex image method (DCIM), basically approximates the
spectral-domain Green’s functions in terms of complex exponentials, and then casts the integral representations
of the spatial-domain Green’s functions into closed-form expressions via Sommerfeld identity [5]. Although
DCIM is quite robust and works well to get the closed-form Green’s functions, it has some limitations in the
form of a limited range of validity depending upon the implementation of the method.

Some issues originating from the implementation of DCIM are discussed and possible clarifications are
provided in Section 2. In Section 3, application of the closed-form Green’s functions in conjunction with the
spatial-domain MoM is reviewed, with the emphasis given to efficient handling of multiple vertical conductors.
Finally, conclusions are provided in Section 4.

2. Discussions on Closed-form Green’s Functions
It is well known that spectral-domain Green’s functions can be written analytically in planar multilayer

media, and their spatial-domain counterparts can be obtained from the inverse Hankel transform of the spectral-
domain Green’s functions [4, 6], as

G =
1
4π

∫

SIP

dkρkρH
(2)
0 (kρρ)G̃(kρ) (1)

where k2
ρ = k2

x + k2
y, ρ is the variable in cylindrical coordinate system, G and G̃ are Green’s functions in the

spatial and spectral domain, respectively, H
(2)
0 is the Hankel function of the second kind and SIP is the Som-

merfeld integration path. Since the integrand usually exhibits oscillatory nature and slow convergence, rendering
the transformation computationally very expensive, spectral-domain Green’s functions can be approximated by
complex exponentials, via the generalized pencil-of-function (GPOF) method [6], to obtain closed-form expres-
sions from the inverse Hankel transform. Since the crucial step in this approach is the approximation of the
spectral-domain Green’s functions, which is detailed in [3, 4], discussions on the accuracy of the method for large
distances have concentrated mainly on the approximation procedure, because the resulting closed-form Green’s
functions are, in general, accurate enough for distances as far as k0ρ = 20 − 30 (ρ/λ = 3 − 4), beyond which
they may deteriorate significantly.

In the literature, there were basically three attributable sources of problems in the implementation of DCIM:
(i) not extracting the quasi-static terms, (ii) introducing a wrong branch point in the process of approximation,
and (iii) not extracting the surface wave poles (SWP). In the original implementation of DCIM, as introduced
in [2], there were only one level of approximation, and it was necessary to extract the quasi-static terms to
make the remaining portion of the spectral-domain Green’s functions converge to zero for large kρ values.
However, with the introduction of two-level and multi-level approximation algorithms [3, 7], the necessity of
finding the quasi-static terms and their extraction before the approximation has been eliminated. The issue of
introducing wrong branch point originates from the following observations: spectral-domain Green’s functions,
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when the source is in a bounded layer, have no branch point at kρ = ks, although they have kzs term in the
denominator, where ks is the wave number of the source layer; and the approximating exponentials with kzs

factor in the denominator seem to have branch point at kρ = ks. However, one should note that the exponential
approximation is always performed over the deformed path of SIP and the function to be approximated over this
path is single valued with the right choice of the branch. Therefore, the resulting exponentials divided by kzs is
a singlevalued function with this right choice of the branch. The last problem concerning the SWPs is inherent
to the approach unless the SWP contributions are totally extracted from the functions to be approximated.
The detailed discussions on these issues and some clarifications can be found in [4].

3. MoM-DCIM Application for Multiple Vertical Strips
In the analysis of printed geometries with multiple vertical strips, a method based on MoMDCIM is employed,

as proposed in [7], and it is extended to efficiently handle multiple vertical strips. The algorithm and its efficient
handling of multiple vertical strips can be described by examining one of the inner-product terms in the MoM
matrix entries, as follows:
〈 ∂

∂x
Tx(x, y), Gq

z ∗
∂

∂z
Bz(y, z)

〉
=

∫∫
dxdy

∂

∂x
Tx(x, y) ·

∫
dy′Bz(y′)

∫
dz′

∂

∂z′
Bz(z′)Gq

z(x− x′, y − y′, z, z′) (2)

where Tx(x, y) and Bz(x, y) are the testing and basis functions used in the evaluation of corresponding MoM
matrix entry. Writing the spatial-domain Green’s function Gq

z in terms of its spectral-domain representation
G̃q

z, followed by the change of the order of integrations, (2) can be cast into the following form
〈 ∂

∂x
Tx(x, y), Gq

z ∗
∂

∂z
Bz(y, z)

〉
=

∫∫
dudvF q

z (u, v, z = cons)
∫

dyBz(y − v)
∂

∂x
Tx(x′ + u, y) (3)

where x− x′ = u, y − y′ = v and

F q
z
∼= 1

4π

∫

SIP

dkρkρH
(2)
0

(
kρ

∣∣ρ− ρ′
∣∣) ·GPOF

{ ∫
dz′

∂

∂z′
Bz(z′)G̃q

z(kρ, z = cons, z′)
}

(4)

Note that the auxiliary function Fz(u, v) is obtained analytically in terms of complex exponentials and it is an
explicit function of u = x−x′ and v = y−y′, and the inner integral of (3) can easily be obtained analytically for
most basis and testing functions. Therefore, the same inner-product terms corresponding to other vertical strips
can be obtained simply by evaluating Fz(u, v) for different values of u and v, as long as the basis functions used
to represent the current densities along them have identical z′-dependencies. Consequently, having more than
one vertical conductors in a printed circuit would not require significant amount of additional computation.

The formulation described above is applied to a microstrip line lying along x-direction with four vertical y-
spanning strips to assess and demonstrate the computational efficiency of the method. Here are the parameters
of the microstrip line: the dielectric constant of the medium is 4.0; the length and width of the line is 18.0 cm
and 0.1 cm, respectively; the thickness of the substrate is 0.4 cm; the frequency of operation is 2GHz; and 71
horizontal basis functions along x-direction are employed. As the thickness of the substrate is uniform, which
is usually the case for most of antenna and microwave applications, two basis functions are used over every
vertical strip, and naturally they have the same z and z′ dependencies, satisfying the only criterion for the
efficiency of the method for multiple vertical strips. To validate the method, the current distribution along the
microstrip line is first obtained, and compared to that from a commercially available EM simulation software,
em by Sonnet, as shown in Fig. 1. An excellent agreement is observed; slight differences in the amplitude can be
attributed to the inherent models of the approaches: em by Sonnet solves the problem in shielded environment
while the method proposed here solves it in open environment, which inevitable causes some slight differences
on the resonant frequencies of the structure.

Once the validation is complete, the computational efficiency of the proposed method is assessed in terms
of the CPU time obtained from a 1.5 GHz Centrino CPU. The microstrip line is first analyzed with one vertical
strip (at x = 7.0 cm), and then the number of vertical strips is increased to four by one-by-one. As the ultimate
measure for the efficient handling of multiple vertical metallization, in addition to the first one, matrix fill time for
additional vertical strips are listed in Table 1. For the matrix fill times in case I, the necessary auxiliary functions
are calculated only once and used repeatedly, but for case II, the auxiliary functions are re-calculated for every
entry corresponding to each basis and testing functions introduced with the addition of new vertical strips. It
is observed that efficient use of auxiliary functions has significantly reduced the computational complexity of
the whole method. This can be stated with adding new vertical strips to the microstrip line with one vertical
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strip costs about 4.0 seconds whereas it requires 70.0 seconds in case of not using auxiliary functions repeatedly.
Note that CPU times are obtained by using only the symmetry of the MoM matrix and it has not been used
any acceleration technique for the evaluation of MoM matrix entries.

Figure 1: Magnitude of the current along the microstrip line with 4 vertical strips.

Table 1: MoM matrix fill times for each additional vertical strip.

Number of vertical MoM matrix fill-time (sec)

strips CASE I CASE II

1 11.8 69.8

2 4.0 68.6

3 4.1 72.2

4 4.2 75.8

4. Conclusions
Issues related to the implementation of DCIM have been first clarified, as it is used in conjunction with the

MoM in the algorithm proposed in this paper. The algorithm, based on the DCIM-MoM technique, is assessed
in terms of its accuracy and the efficiency in the analysis of printed geometries with multiple vertical conductors.
It has been shown mathematically and numerically that, as long as the vertical dependencies of the basis or
testing functions are chosen to be the same, the inclusion of additional vertical conductors is extremely efficient.
Therefore, this approach seems to be a good candidate to use in conjunction with an optimization algorithm in
a CAD tool.
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Thick Metal Models

J. C. Rautio
Sonnet Software, Inc., USA

Both the fine detail of fields at the edge of thick metal and the large scale fields over an entire circuit must
be accurately represented in an EM analysis in order to correctly analyze thick metal in a planar circuit. This
is a very difficult EM problem that has seen substantial research over the last decade. As a result, all serious
commercial EM tools now include specialized thick metal models. The different models are briefly described
and their relative advantages and disadvantages pointed out. Techniques for quantifying thick metal modeling
error, as well as determining if a thick metal model is even needed, are detailed.
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Analysis of Cylindrical Microstrip Line with Finite Thickness of
Conductor

H. Miyagawa, T. Nishikawa, K. Wakino, Y.-D. Lin, and T. Kitazawa
Ritsumeikan University, Japan

Abstract—Novel analytical method based on extended spectral domain approach (ESDA) is presented for
cylindrical microstrip line. The method utilizes the aperture fields as the source quantities, as opposed to the
conventional methods, which have used the current on the strip as the source. The whole region can be divided
into sub-regions by the introduction of aperture fields, and each sub-region can be treated independently. This
method makes possible the analysis both of zero and finite thickness of the strip conductor. The numerical
procedure incorporates the effects of the edge singularities properly and can afford the efficient and accurate
calculations for the phase constants and characteristic impedances of a microstrip line with zero- and finite-
thickness conductor. The calculated results by the present method reveal the effect of conductor thickness on
the characteristics of a cylindrical microstrip line.

1. Introduction
Recently, curved surface substrates have attracted an attention as materials of antennas and front ends for

portable terminals. A lot of analyses of the propagation characteristic of the stripline and the coplanar waveguide
composed on a cylinder substrate are reported [1–6], including the moment method, the FDTD method [3], and
the finite element method [5]. However, their works assumed the conductor thickness to be zero, and the report
concerning the effect of the conductor thickness on the propagation characteristic has not be found. Recently,
authors reported on the effect of the finite thickness of a conductor on electric characteristics of cylindrical
coplanar waveguides (CCPWs) by using the extended spectral domain approach (ESDA).

In this paper, we report on the analytical method of the cylindrical microstrip line based on ESDA, and
the effect of conductor thickness by numerical calculation. The present method utilizes the electric fields at
the interface of the aperture as the source quantities, as opposed to the conventional methods [1, 2], which
have used the current on the strip as the source. The accurate and efficient numerical procedure, which makes
consideration for the field singularities near the conductor edge of zero- and finite-thickness, reveals the effect of
the curvature and the finite thickness of a conductor on the characteristic impedances and the phase constants
of the cylindrical microstrip line.

2. Theory
Cross section of a microstrip line on a cylindrical dielectric substrate is shown in Fig. 1(a). Curvature R of

the cylindrical substrate is defined as the ratio of inner and outer diameter of substrate,

(a) Cross section. (b) Aperture fields.

Figure 1: Schematic structure of cylindrical microstrip line.

R =
a

b
= 1− h

b
(1)
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where h = b − a is substrate thickness. A signal conductor of W in width is put on the substrate, which is
backed by the ground conductor. Both conductors are assumed to be perfect electric conductor (PEC), but
the signal conductor has the finite thickness t, as opposed to the previous reports. A single-layered substrate
is assumed in the following explanation for the simplicity, although the method is applicable to multilayered
and/or overlaid structure problem. The theoretical scheme is based on the ESDA [8–10]. The method has
been successfully worked out to analyze the effect of the conductor thickness of the various types of planar
transmission lines. Here, in this study, the method is extended further to the analysis of the effect of conductor
thickness in cylindrical microstrip line. In the ESDA, first the aperture electric fields are introduced at the
circumferential surfaces of dielectric substrate at ρ = b, eb(φ), and the upper surface of signal conductor at
ρ = b + t, ec(φ) shown in Fig. 1(b). By introducing these aperture fields and utilizing the equivalence theorem,
the whole region is divided into subregions, i. e., (I) the outer (ρ > b + t), (II) the aperture (b < ρ < b + t)
and (III) the substrarte (ρ < b) subregions. After dividing the region, each subregion can be treated separately,
and then the longitudinal components of electromagnetic fields in each subregion are expressed in terms of the
appropriate eigenfunctions Φ(i)

n (φ), Ψ(i)
n (φ), which satisfy the boundary conditions in the φ-direction.

E(i)
z (ρ, φ)e−jβz =

∞∑
n=0

Ẽ(i)
z (ρ)Φ(i)

n (φ)e−jβz (2)

H(i)
z (ρ, φ)e−jβz =

∞∑
n=0

H̃(i)
z (ρ)Ψ(i)

n (φ)e−jβz (3)

i = I, II, III

where β is the unknown phase constant and Ẽ
(i)
z is the transform of E

(i)
z . The transversal (ρ, φ) field components

can be related to the longitudinal components E
(i)
z and H

(i)
z by utilizing the field equations. The general solution

of the transform Ẽ
(i)
z in region (i) can be expressed as

Ẽ(i)
z (ρ) = A(i)Jn(βcρ) + B(i)Yn(βcρ) (4)

βc =
√

ω2εµ− β2

where A(i), B(i) is unknown constants, and they are determined by the boundary conditions at the interfaces.
The continuities of electric fields are expressed as

E
(III)
φ (ρ = a + 0, φ) = 0, E(III)

z (ρ = a + 0, φ) = 0 at ρ = a (5)

E
(II)
φ (ρ = b + 0, φ) = E

(III)
φ (ρ = b− 0, φ) = eb

φ at ρ = b (
φW

2
< φ < π) (6)

E(II)
z (ρ = b + 0, φ) = E(III)

z (ρ = b− 0, φ) = eb
z (7)

E
(I)
φ (ρ = b + t + 0, φ) = E

(II)
φ (ρ = b + t− 0, φ) = ec

φ at ρ = b + t (
φW

2
< φ < π) (8)

E(I)
z (ρ = b + t + 0, φ) = E(II)

z (ρ = b + t− 0, φ) = ec
z. (9)

These continuity conditions are transformed into spectral domain and they are used to relate the unknowns
A(i), B(i) to the aperture fields. The fields are then related to the aperture fields as follows

E(II)(ρ, φ) =
∫

φ′
{T (II)

(b, φ|b + t, φ′) · ec(φ′) + T
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (10)

H(II)(ρ, φ) =
∫

φ′
{Y (II)

(b, φ|b + t, φ′) · ec(φ′) + Y
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (11)

where, T ′
s, Y ′

s are the dyadic Green’s functions. Then, the integral equations on the aperture fields are obtained



62 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

by using the continuities of magnetic fields at the aperture surfaces,

H
(II)
φ (ρ = b + 0, φ) = H

(III)
φ (ρ = b− 0, φ) (

φW

2
< φ < π) (12)

H(II)
z (ρ = b + 0, φ) = H(III)

z (ρ = b− 0, φ) (13)

H
(I)
φ (ρ = b + t + 0, φ) = H

(II)
φ (ρ = b + t− 0, φ) (

φW

2
< φ < π) (14)

H(I)
z (ρ = b + t + 0, φ) = H(II)

z (ρ = b + t− 0, φ). (15)

Applying the Galerkins procedure to these integral equations, we get the determinant equation for the phase
constant β. In the Galerkins, the unknown aperture fields are expressed in terms of the appropriate basis
functions ξφi(φ) and ξzi(φ) as,

eb
φ(φ) =

N∑

i=1

bφiξφi(φ), eb
z(φ) =

N∑

i=1

bziξzi(φ) (16)

ec
φ(φ) =

N∑

i=1

cφiξφi(φ), ec
z(φ) =

N∑

i=1

cziξzi(φ) (17)

where bφi, bzi, cφi, and czi are the unknown expansion coefficients. The basis functions ξφi(φ), ξzi(φ), which
incorporate the singularities of fields properly near the conductor edge [8–10], are used in the following compu-
tations. For the case with the conductors of zero thickness, the aperture region (II) will be eliminated in the
procedure and the aperture field eb equals to ec.

The definition of the characteristic impedance is somewhat ambiguous for the hybrid mode propagation
along microstrip line. We adopt the voltage-current definitions

ZV I =
Vo

Io
(18)

where Vo is the voltage between the center strip and the ground conductor, and Io is the total current flowing
in the z-direction on the strip conductor. The voltage Vo is evaluated by integrating the radial component of
electric field E

(III)
ρ between the ground (ρ = a) and the signal (ρ = b) conductors,

V (φ) =
∫ b

a

Eρ(ρ, φ)dρ (19)

where φ may be any in 0 < φ < φW /2. Therefore V (φ) is integrated with φ over 0 < φ < φW /2 to get

Vo =
2

φW

∫ φW
2

0

V (φ)dφ. (20)

The current Io can be evaluated by the line integral C of the magnetic field around the strip conductor [7]

Io =
∮

c

H · dl. (21)

3. Numerical Procedure and Results
The conventional methods have treated the propagation characteristics of a microstrip line on a cylindrical

substrate assuming the conductor thickness to be zero [2]. The present method, when the aperture field is
adopted as the source quantity in the formulation, can afford to present the characteristics of the case with
finite as well as zero thickness. Also, the present formulation procedure could employ the current on the strip
instead of the aperture field as the source quantity, although this procedure could be applied only to the case
with zero thickness. Fig. 2 shows the frequency dependency of the effective dielectric constant εeff and the
characteristic impedance ZV I of a microstrip line on a cylindrical substrate with larger R [2]. The effective
dielectric constant εeff is obtained in terms of the phase constant β as

εeff = {β/ω
√

ε0µ0}2 (22)
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The results of zero thickness conductors are calculated by both the aperture field and the current bases, and
both results are in excellent agreement and they agree well with the conventional ones [2] over the frequencies.
The figure includes the results of the case with finite thickness of the strip conductor (50 µm) showing the effects
of the conductor thickness on εeff and ZV I .

(a) εeff . (b) ZV I .

Figure 2: Frequency dependency of propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, R = 0.9.

(a) εeff . (b) ZV I .

Figure 3: Curvature dependency of propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, f = 10 GHz.

Figure 4: Thickness effect on propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, R = 0.9.

The present methods is equally applicable to the a cylindrical microstrip line with larger and smaller curva-
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ture rate R. Fig. 3 shows the curvature dependency of εeff and ZV I . The value of εeff increases rapidly when
curvature rate R is 0.5 or less. That is, the concentration of the electromagnetic field in the dielectric substrate
becomes stronger as the curvature ratio becomes smaller. Therefore, the effect of the thickness of the conductor
becomes smaller for the smaller R. Fig. 4 shows the conductor thickness effect where the relative changes of εeff

and ZV I are presented with the thickness variation of conductor. Both εeff and ZV I are decrease monotonously
up to 100 µm thickness conductor. It should be noted that the effect of the conductor thickness becomes smaller
for higher frequency (f = 18 GHz), as opposed to a cylindrical coplanar waveguides (CCPWs), where the effect
becomes larger for higher frequency. This is why the electromagnetic field concentrates more in the dielectric
substrate between the strip and the ground conductors and the effect of conductor thickness becomes smaller
for higher frequency.

4. Conclusion
Novel analytical method based on extended spectral domain approach (ESDA) is presented for a cylindrical

microstrip line. The method is able to treat the effect of the finite thickness of a strip conductor by utilizing the
aperture electric fields as source quantities. The numerical procedure incorporates the effects of the edge singu-
larities properly and can afford the efficient and accurate calculation method for the characteristic impedances
in addition to the phase constants of a cylindrical microstrip line. The calculated results for zero-thickness
conductor by both procedures, based on current or aperture field, are in good agreement and also they agree
well with the published data. The results obtained by the present method show the curvature dependency of
the propagation characteristics and reveal the effect of conductor thickness, which is different from that of a
cylindrical coplanar waveguides (CCPWs).
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