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Abstract—We present an alternative approach to the solution of boundary value problems (BVPs) for elliptic
systems arising in mathematical models of layered structures. The main idea of the method is to consider
auxiliary problems for differential operators separated componentwise and to reduce them to a sequence of
iterative problems such that each can be solved (explicitly) by the Fourier method. The solution sequence is
then constructed with the help of a contracting transfer operator evaluated explicitly. This method facilitates
both analytic and numerical solutions and can be generalized to more complicated mixed BVPs for semilinear
partial differential operators.

1. Introduction
The processes which take place in layered structures may be described in terms of boundary value problems

(BVPs) for elliptic systems [1, 2], among them are the Laplace, Helmholtz, and Lamè equations, equipped
with appropriate boundary conditions of mixed type, including boundary–value contact problems (BVCPs)
formulated and investigated in [3].

The simplest examples of BVPs with boundary conditions of mixed type in electromagnetics and acoustics
[1, 2] arise when the Dirichlet (or Neumann) conditions are stated on one part of the boundary and the Neumann
(Dirichlet) condition on its complement. Such problem are formulated, e. g., in mathematical models of the wave
propagation in transmission lines [1]. A decomposition for the solution to the BVPs for the equation systems can
be applied when the differential operator can be separated while the boundary value (trace) operators are mixed
componentwise on the boundary. In Section 3 we present an example of such a separation (decomposition).

In this work we present an approach for analytical and numerical solution of BVPs in thin layers based on
approximate decomposition. The main idea of this method is to simplify the general BVP and to reduce it to a
chain of auxiliary problems and then to a sequence of iterative problems such that each of them can be solved
(explicitly) by the Fourier method.

2. Formulation
We present the method for the case of a BVCP [3] for the system of Lamè equations in a thin layer (band)

equipped with mixed boundary conditions. To this end, consider an elastic band S = {−∞ < x1 < +∞, 0 <
x2 < h} with Poisson’s ratio ν situated on the stiff base x2 ≡ 0. The boundary lines x2 = h and x2 ≡ 0
are denoted, respectively, by K1 and K2 (Fig. 1); ω =

⋃N
m=1 ωm, where ωm = [ am, bm], is a set of disjoint

segments; and ω∗ = K1 \ ω. Distribution of shearing strains on line K1, displacements on ω, and elongations
on ω∗ are given. We denote by uj and Fj , (j = 1, 2) the displacements and respectively projections of the
body forces in directions xj . The determination of uj reduces to a mixed BVP [3] for the Lamè equations in S
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and the conditions at infinity
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BVP (1)–(3) has the unique classical solution if the boundary functions are sufficiently smooth. Namely, the
following statement is valid (see [3]):

If the functions F1 ∈ Lp(S), F2 ∈ Lp(S), f1 ∈ Lp(K1), f3 ∈ Lp(ω∗), p > 1 (f ∈ Lp(Ω) if |f |p is integrable
over Ω) and function f2 ∈ Cq(K1), q > 3, is a smooth (q-times continuously differentiable) compactly-supported
function with supp f2 ∈ ω then problem (1)–(3) is uniquely solvable if and only if

∫

K1

f1 dx1 +
∫

S

F1 dS = 0

and the solutions uj ∈ C2(Πah)∩C(Π̄ah) in every rectangle Π = Πah = {(x1, x2) : 0 < x1 < a, 0 < x2 < h}.
3. Approximate Decomposition

Consider a simplified version of the problem (1)–(3) which will be called problem A: body forces F1,F2 ≡ 0;
shearing stresses f1 ≡ 0 on K2; and normal stresses f3 ≡ 0 on ω∗. Consider this problem in a long rectangle
Πah bounded by the curve Γ = K̂1

⋃ K̂2

⋃H1

⋃H2, where K̂i = Ki

⋂{0 < x1 < a}, (i = 1, 2); ω̂∗ = ω∗
⋂{0 <

x1 < a}; H1 = {x = (x1, x2) : x1 = 0, 0 < x2 < h}, H2 = {x = (x1, x2) : x1 = a, 0 < x2 < h}; and
u = (u1, u2) denotes the vector of displacements. Introduce the trace operators L(1) and L(2) specifying the
boundary conditions on ω̂, ω̂∗ and Γ:
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is the operator of the Neumann–Dirichlet boundary conditions, and
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The operator Lu = L(1)u + L(2)u specifies the boundary conditions of problem A in the form Lu = f ,
with f = (0, f̂2(x)) and

f̂2(x) =

{
f2(x1), x = (h, x1) ∈ ω,

0, x ∈ Γ\ω,
(7)

being a differentiable function on Γ with a compact support supp f2 ⊆ ω. Introduce matrix differential operators
of the system in problem (1)–(3) and problem A and rewrite the latter as

Du = 0, Lu = f , (8)
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where
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Assuming that displacements u2 are absent on ω∗ write problem A in the form

Du = 0, L̂u = f , L̂ = L̂(1) + L̂(2), (10)

where L̂(1) = ‖l̂(1)ii ‖i=1,2 is defined as in (4) with the only difference that l̂
(1)
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nontrivial components: l̂
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Define the sequence {un} of vector-functions according to
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(11)

The limiting function (if exists) u = limn→∞ un (where the limit is determined with respect to an ap-
propriate norm) satisfies (8). In order to prove the existence consider BVP (11) for un+1 = (u(n+1)

1 , u
(n+1)
2 ).

Componentwise, (11) consists of two inhomogeneous BVPs for Poisson equation in the rectangle. The solution
to each problem can therefore be obtained as a sum of the corresponding volume and surface (line) potentials.
In the vector–operator form the relationship between two intermediate problems (11) can be represented as

un+1 = Kun, (12)

where K is a volume–surface integral operator defined in term of the potentials.
Applying the Schauder a priori estimates of the solution to BVPs for elliptic PDEs [4, 5], using the explicit

form of un+1 and properties of logarithmic and Green’s potentials [6, 7], one can show that

‖un+1‖C2(Π) 6 Mn

(‖un‖C2(Π) + ‖f2‖C2(ω)

)
, n = 1, 2, . . . , (13)

where constant Mn depends on the diameter of Πah and Mn → 0 if diam Πah → 0. Thus, operator K (12) is a
contraction in the space C2(Π)∩C(Π̄) of two-component vector-functions if the diameter of set ω, parameter h,
and the norm of boundary function f2 are sufficiently small. This implies the existence of the unique solution
u ∈ C2(Π) ∩ C(Π̄) to problem A.

This approximate decomposition can be applied to the solution of BVPs of the type (1), (2) for semilinear
systems with the differential operators Du = 4u +F(u, ux1 , ux2 , ux1x2), where F is nonlinear with respect to
u and uxi . Constructing the iterations similar to (11) or (12) and showing or assuming that the corresponding
transfer operator K is contraction, we obtain a recursive procedure (12) to determine displacements u.

4. Solution by the Fourier Method
One can obtain explicit solution to every intermediate BVP (11) in the form of Fourier series
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a
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a dx1 are Fourier coefficients for the function f2 from boundary condition (2) and
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are the Fourier coefficients obtained for (11) on the previous stage n.

Series (14) converge absolutely and uniformly in every rectangle Πδ
ah = {0 6 x1 6 a, δ 6 x2 6 h} with

0 < δ < h and admit term-wise differentiation arbitrary number of times. The rate of convergence is exponential.
In view of the explicit solution (14) it is reasonable to specify a boundary function f2(x1) in problem A and

(7) as a smooth compactly-supported function f2 ∈ Cp(R), p > 3, with supp f2 ∈ ω. One can consider, for
example, the case when f2(x1) is the so-called hat function of order p (a product of a polynomial in even powers
of argument that vanishes at the endpoints of ω and a Gaussian exponent) for which the Fourier coefficients can
be calculated explicitly. Such hat functions possess the properties of B–splines; therefore, one can approximate
or interpolate a smooth function on the line R with a finite support ω by a finite linear combination of hat
functions and apply the approximate decomposition with rapidly converging series solutions to BVPs with
virtually arbitrary boundary functions.
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Figure 1: Statement of the problem. Figure 2: The function f2.

Figure 3: The displacement u1. Figure 4: The displacement u2.



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 969

5. Numerical
Let us present some qualitative results of numerical–analytical solution to problem A (a simplified version of

(1)–(3) considered in a long rectangle) obtained using approximate decomposition (first iteration); the profiles of
boundary displacements are taken as hat functions presented in Fig. 2. Fig.s 3 and 4 show u1 and u2 calculated
in the case of a/h = 10 and two disjoint segments ω = ∪2

i=1[xSi
− pi, xSi

+ pi].
Values of displacement u1 in Fig. 3 are zero at xS1,2 because these points shift only in x2-direction; values in

the support intervals (xS1 − p1, xS1) and (xS2 − p2, xS2) are negative because these points shift in the opposite
direction; values in the intervals (xS1 , xS1 + p1) and (xS2 , xS2 + p2) are positive because these points also shift
in the x2-direction and take maximum and minimum at the respective points. Function u2 in Fig. 4 takes only
positive values in the intervals (xS1 − p1, xS1 + p1) and (xS2 − p2, xS2 + p2), maximum and minimum are at
the points xS1 and xS2 respectively.

6. Conclusion
We have developed a method of approximate analytical–numerical solution to BVPs for elliptic system in

parallel-plane layers based on decomposition of boundary value conditions. An advantage of the method is the
possibility of explicit determination and fast computation and visualization of all components at every point of
the layer. The method can be extended to wide families of BVPs using spline-type approximations based on
hat functions.
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