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Abstract—A software prediction tool called EPICS (Enhanced Propagation for Indoor Communications Sys-
tems) was developed at the ESAT-TELEMIC division of the K. U. Leuven in two versions: a Geometric Optics
(GO) version and a Physical Optics (PO) version. However, like many other three-dimensional package, this
can only determine the signal in an environment that can be decomposed into (ir)regular hexahedral obstacles
(with 6 sides like rectangular blocks, cubes, etc.) or (complex) combinations of them. Although most of the
real life environment can be approximated by these hexahedral obstacles, this might lead to some artefacts
like periodic radar cross section variations, the need for multiple diffractions to calculate the signal behind a
cylindrical obstacle, or reflections that are ignored (e. g., because the approximated side plane is positioned so
that a reflection on that plane can not reach the receiver) is existing. To calculate the signal more accurately
for those cases, we need to implement curved obstacles into EPICS. In a first step to achieve this goal, the
introduction of cylindrical obstacles is investigated.

In this paper, the general strategy is discussed. The first step is to determine the different intermediate
(i. e., penetration, reflection and diffraction) points on the ray between transmitter and receiver. Efficient
computational routines have been written and tested for this purpose, mostly solving the problem first in two
dimensions (projected in a plane perpendicular to the axis of the cylinder) and then transforming this solution
to the three-dimensional problem. Once these intermediate points have been found, one can start with the
computation of the electromagnetic field.

In the case of a penetration, the intermediate point(s) can be found very easily (crossing point(s) of a line and
a circle) and the electromagnetic computations don’t differ from the computations with hexahedral obstacles.
For the reflection by a non perfectly conducting surface, the plane wave Fresnel reflection coefficients can be
used. Also the finite thickness of the cylindrical walls can be taken into account, using internal (multiple)
reflections, if the losses are high or the reflection coefficient of the wall is not to large.

For the diffractions, the two-dimensional geometric problem that needs to be solved to find the diffraction
points is the determination of the tangent line to a circle (both from transmitter and receiver). Note that both
can have two tangent lines, and one might have to match the two corresponding diffraction points. In this case,
the electromagnetic computations for the vertical (i. e., field component parallel with the axis of the cylinder)
and horizontal polarisation are done separately. An important issue in these computations is the convergence
of the series used for the calculation of the field.

The reflection points on a cylindrical wall can not be found as easily as in the previous two cases. In general,
an iterative process is required. This implies that the search for a good starting value is an important issue.
Therefore some efficient computer programs were written to find firstly a good starting value of the Newton-
Raphson iteration. As for the electromagnetic computations, one has to take into account that the caustics are
transformed after the reflections and thus another amplitude factor has to be taken into account.

Although the described routines are not (yet) a part of the EPICS software, new routines based on Geometric
Optics (GO) have been written and tested (in matlab) to predict penetration, reflection and diffraction of
electromagnetic fields around cylindrical obstacles. This will be used to compute the effects of a curved airport
terminal on an Instrument Landing System (ILS).

1. Introduction
Most of the real life environment can be approximated by hexahedral obstacles, or combinations of different

hexahedral obstacles. Of course this leads to some artefacts like periodic radar cross section variations, the need
for multiple diffractions to calculate the signal behind a cylindrical obstacle, or reflections that are ignored,
because the approximated side plane is positioned so that a reflection on that plane can not reach the receiver
(see Figure 1). To calculate the signal more accurately for those cases, we need to implement cylindrical obstacles
into the EPICS program [1].

For each phenomenon, i. e., penetration, diffraction and reflection we briefly discuss the routines to find the
intermediate (penetration, diffraction and/or reflection) points [2]. In most cases, this implies that we first solve
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Figure 1: Examples of combinations of hexahedral obstacles to more complex obstacles house (left) and conical
tower (right).

a two-dimensional problem which can be easily transformed to the three-dimensional solution. The main part
of this paper, however, will be devoted to the electromagnetic computations of the field around these cylindrical
obstacles.
1. Penetrations and Attenuation

In EPICS the “direct” field between 2 (intermediate) points is calculated in free space. However, this
path might be obstructed by an obstacle. Therefore, each wall/obstacle obstructing this path introduces some
attenuation of the signal strength. In general we have 3 possibilities: no penetration (e. g., the line transmitter-
receiver is parallel to the axis of the cylinder but the distance between the two lines is bigger than the radius),
one penetration (if either the transmitter or the receiver is inside the cylinder, while the other is outside, or in
the tangent case) or two penetrations (general case).
1.1. How to Find the Penetration Points?

The routine to find the penetration points is rather easy: first we determine the crossing points of the
line transmitter-receiver (or between 2 intermediate points) with the top and bottom plane of the cylinder. If
these points are between the transmitter and receiver, and if the distance of these points to the centre of the
top/bottom plane respectively is smaller than the radius of the cylinder, these are valid penetration points. The
last step is to investigate the cylindrical wall. Therefore, we need to calculate the crossing points of the line
between the projected locations of the transmitter and receiver and a circle. Figure 2 shows the side and top
view of some examples (the transmitter is denoted by a ¦, the receiver by a ◦ and the penetration point(s) by
an ∗).

Figure 2: Examples of penetration: both through the side walls (left) and one penetration through a side wall
combined with a penetration through the reference/bottom plane (right).

1.2. The GO Penetrated Field
Classical Geometrical Optics (GO) states that the high-frequency electromagnetic field propagates along
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ray paths, which satisfy the principle of Fermat, which states that the propagation of waves associated with
these high frequency fields can be reduced to the study of wave paths along which the travel time is minimal.
For perpendicular polarisation, the incident field lies in the plane perpendicular to the plane of incidence (soft
boundary conditions). Hard boundary conditions require the incident field to be parallel with the plane of
incidence. For the reflection by a non-perfectly electromagnetic conducting surface the plane-wave Fresnel
reflection coefficients can be used:

Γ⊥ =
ε′ cos θ −

√
ε− sin2 θ

ε′ cos θ +
√

ε− sin2 θ

Γ‖ =
cos θ −

√
ε′ − sin2 θ

cos θ +
√

ε′ − sin2 θ
(1)

where θ is the angle between the incidence ray and the normal of the penetrated plane, ε the permittivity and σ
the conductivity of the wall. Also the finite thickness of the wall under investigation can be taken into account
if the dimensions are small with respect to the distance between transmitter and receiver. In those cases, a
plane wave model based on successive reflections within the slab leads to much better results (Figure 3). Only
when the losses are small and is not close to 1, edge effects have to be taken into account. However, for practical
cases of concrete and thick walls the losses are sufficiently high.

Figure 3: Multiple reflections within a slab.

If we suppose that walls can be approximated by a single slab of dielectric material we can easily see from
(Figure 3) that the penetrated field is given by (2), where Γ is the appropriate reflection coefficient. Using this
equation, the generalised transmission coefficient can be derived (3).

~Et = ~Ei
∞∑

n=1

(1 + Γ) (−Γ)2n−2 (1− Γ) e−2(n−1)sαe−2j(n−1)sβej(n−1)k0d sin θ (2)

τg =

(
1− Γ2

)
e−sαe−jsβ

(1− Γ2) e−2sαe−j2sβejk0d sin θ
(3)

where k0 denotes the free space phase constant, while α and β are the plane wave attenuation and phase constant
of a lossy medium [3], given by (4). As for the case of the generalised reflection coefficient, the penetration
coefficient for given material parameters may depend to a great extent on the frequency and thickness used.
Inversely, when thickness and frequency are known penetration measurements can be used to estimate the
material parameters of different structures [4].
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Figure 4 shows 2 examples of respectively a “perpendicular” incidence, where the line transmitter-receiver
is perpendicular to the axis of the cylinder and a “non-perpendicular” incidence. In this last case an extra
parameter m can be specified (note that the line transmitter-receiver is still crossing the axis of the cylinder).
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Figure 4: Examples of penetration through a cylinder: perpendicular (left) and non-perpendicular (right) case.

For these examples we used a wall with a thickness l of 0.1m, a relative permittivity 2.5 (εr) and a conductivity
of 0.036 (σ). The used frequency was 2.45 GHz.

Note that when m gets very high the losses through the faces are also bigger. For smaller incidence angles,
resonance can occur in the wall, so that the losses are not directly proportional with s (see also Figure 3).

2. Diffractions
Again we can then solve the geometrical problem (see Figure 5). The determination of the diffraction

points in a two-dimensional environment is rather easy: we draw the lines tangent to the circle from both
the transmitter and the receiver (see top views). The last step is to determine which of the two points of the
transmitter side corresponds with which point at the receiver side (smooth transmission between the air medium
and the cylinder surface). Note that we only take diffractions around the cylinder into account. Thus, if one
or both of the two diffraction points of one ray turns out to be above the “top” plane or below the “bottom”
plane (reference plane), this ray is not taken into account (e. g., Figure 5).

Figure 5: Examples of diffraction: both diffractions are valid (left) and the righter diffraction is ignored (right).

2.1. Vertical Polarisation
We have considered a plane wave incident upon a perfectly conducting cylinder (Figure 6). The incident

wave is linearly polarised with electric vector ~Ei parallel to the axis of the cylinder. The incident ~k-vector is
perpendicular to the axis of the cylinder. In terms of cylindrical coordinates, we have

~Ei = ~izE0e
jkx = ~izE0e

−jkρ cos θ0 (5)
In this analysis we follow the procedure described by Kong [5].

To match the boundary conditions at ρ = a, we transform the plane wave solution into a superposition of
cylindrical waves satisfying the Helmholtz wave equation in cylindrical coordinates:
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Figure 6: Scattering by a conducting cylinder.

e−jkρcosθ0 =
∞∑

m=−∞
amJm(kρ)ejmφ (6)

The constant am can be determined by using orthogonality relations for ejmφ. We multiply both sides by e−jnφ

and integrate over φ from 0 to 2π. In view of the integral representation for the Bessel function,

Jn(kρ) =
1
2π

∫ 2π

0

e−jkρcosθ0−jnφ+jnπ/2dφ (7)

we obtain am = e−jnπ/2 and
e−jkρcosθ0 =

∞∑
m=−∞

Jm(kρ)ejmφ−jmπ/2 (8)

This expression is referred to as the wave transformation, which represents a plane wave in terms of cylindrical
waves.

The scattered wave can also be expressed as a superposition of the cylindrical functions satisfying the
Helmholtz wave equation. Expecting outgoing waves, we write the solution in terms of Hankel functions of the
first kind. The sum of the incident wave and the scattered wave satisfies the boundary condition of a vanishing
tangential electric field at ρ = a. We find the total solution to be

~E = ~izE0

∞∑
n=−∞

[
Jn(kρ)− Jn(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejnφ−jnπ/2 (9)

The first summation term represents the incident wave; the second summation term, the scattered wave. Note
that for ρ = a, the field from (9) becomes zero. In the far-field zone, where kρ >> 1, we can make use of the
asymptotic formula for H

(1)
n (kρ) and find that the scattered wave takes the form of the first expression of (10)

for small radii a, which can be expanded with respect to ka.

~Es ≈ ~izE0

∞∑
n=−∞

√
2

πkρ

Jn(ka)

H
(1)
n (ka)

ejkρ+jn(φ−π)−jπ/4

~Es = ~izjE0

√
2

πkρ

[
1

ln(ka)
+ (ka)2 cosφ− (ka)4

8
cos 2φ + ...

]
ejkρ−jπ/4 (10)

This series converges rapidly when the radius of the cylinder is small compared with the wavelength, ka << 1.
The first term is angle-independent and signifies that the scattered wave caused by an infinitely thin wire is
isotropic.
2.2. Horizontal Polarisation

We have also generalised the procedure and implemented the diffraction by a conducting cylinder for hori-
zontal polarisation. In this case, the electrical field can be expressed like this (see Figure 6):

~Ei = ~iyE0e
−jkρ cos φ (11)

The scattered wave takes the following form:

~Es = ~iρ

∞∑
n=−∞

anH(1)
n (kρ)ejn(n−π/2) + ~iφ

∞∑
n=−∞

bnH(1)
n (kρ)ejn(n−π/2) (12)
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Once again, we have to require that the φ-component of the total field (incident and scattered field) vanishes
for ρ = a.

The φ-component of the incident field (11) can be written as:
~iφ = −~ix sin φ + ~iy cosφ

~Ei
φ = − ~E0e

−jkρ cos φ cosφ (13)

By differentiating Eq. (8) with respect to ρ we obtain:

− jkejkρ cos φ = k

∞∑
n=−∞

J ′n(kρ)e−jn(n−π/2) (14)

where the derivative of the Bessel function can be found from [6]:

J ′n(z) =
Jn−1(z)− Jn+1(z)

2
(15)

J ′0(z) = −J1(z) (16)
When considering only the φ-component of the scattered field (12), we find (17). Indeed, the φ-component

vanishes in the far field. This expression can be simplified as we have done above for the vertical polarisation.

~E = ~iφE0

∞∑
n=−∞

[
J ′n(kρ)− J ′n(ka)

H
(1)
n (ka)

H(1)
n (kρ)

]
ejn(φ−π/2) (17)

In Figure 7 both the vertical and horizontal component are shown for 2 examples. Note that the horizontal
component gets stronger as the radius of the cylinder increases.

Figure 7: Examples of diffracted fields around a cylinder.

3. Reflections

3.1. Iterative Process Required to Find the Reflection Points
Whereas for the previous phenomena, the determination of the intermediate points was rather easy, this

requires some more attention in the case of a reflection. Of course, one can determine some easy cases as well,
e. g., reflections on top/bottom plane, symmetrical cases, etc. The general case for the determination of the
reflection point(s), is somewhat more complicated. To find the solutions of the two-dimensional problem we
have to solve a fourth degree equation iteratively [2]. This equation is derived by drawing a tangent line on
the circle through a chosen reflection point on the circle to determine the mirror images of the transmitter (see
Figure 8).

From those points, one can compute the points on the line transmitter-receiver (λ2 and λ2) where the
signal will be reflected to (i. e., the crossing points between this line and the lines from the mirror image of the
transmitter and the reflection points under investigation, determined by λ1). The goal is to determine λ1 so
that the vector determined by λ2, λ2b respectively, is equal to the projection of the receiver. This implies that
λ2 and λ2b should be equal to 1, leading to Eq. (18).
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Figure 8: Sketch of general case.

Figure 9: Examples of reflection on a cylinder: without (left) and with (right) reflections on the top and bottom
plane.

λ2,2b = λ1

[
±2Rc

√
a′ + b′λ1 + c′λ2

1 − 2a′ − b′λ1

±Rc

√
a′ + b′λ1 + c′λ2

1 − a′ + c′λ2
1

]

λ2,2b = 1? ⇔ A4λ
4
1 + A3λ

3
1 + A2λ

2
1 + A1λ1 + A0 = 0 (18)

where a′ is the quadratic norm of the projected transmitter (λ1 = 0), b′ twice the scalar product between this
vector and the vector between projected transmitter and receiver, c′ the quadratic norm of this last vector and
Rc the radius of the cylinder.

Unfortunately, we don’t always have the possibility to solve a linear equation of the fourth order. Therefore,
we will solve this problem iteratively by using the Newton-Raphson method. One can see that equation (18)
has 4 possible singularities (nominator equal to zero), and that they are difficult to calculate (start value of
Newton-Raphson has to be on the right side of these singularities). Therefore we will search a solution for the
inverse function (1/λ2 = 1). The last step will be again the transformation of the two-dimensional solution to
the three-dimensional solution (excluding reflection points on the cylindrical wall that lie above the top plane
or below the bottom plane).
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3.2. Reflected Field Computations
For the implementation of the computation of the reflected field, one has to keep in mind that after the

reflection, the location of the caustics, both for parallel and perpendicular to the axis of the cylinder, might
have been changed as is shown in Figure 10.

Figure 10: Reflection against a curved surface (parallel case).

Taking a cross-section along one of the radii of curvature, and expressing the arc on the circle as a function
of the viewing angles, one can obtain:

a∆α cos θ0 = l∆γ1 = ρ∆γ2 (19)
where ∆γ1 = ∆θ0 −∆α and ∆γ2 = ∆θ0 + ∆α. Eliminating ∆α/∆θ0 this leads to

1
ρi

=
1
l

+
2

Ri cos θ0

1
R1

=
cos2 α

a
(20)

1
R2

=
sin2 α

a

where Ri represents the radius of curvature (parallel and perpendicular to the axis). Indeed, it can be shown
in analysis that the radius of curvature of a function y(x) is given by:

Ri =
y′′√

(1 + y′2)3
(21)

In general the cut of a cylinder is an ellipse which can be expressed by (x/a′)2 + (y/b′)2 = 1, where a′ = a
and b′ = a/ cosα, bearing in mind that α is the angle between the axis of the cylinder and the cut. Using (21)
at the expression of the ellipse, one obtain the formulas of (20). Note that for the parallel case R2 will become
infinite. This implies that the distance to the new caustics can be computed:

Figure 11: A bunch of rays with a different radius of curvature.

1
ρ1

=
1
l

+
2 cos2 α

a cos θ0

1
ρ2

=
1
l

+
2 sin2 α

a
(22)



Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 947

Keeping in mind that the total distance after reflection is given by di = ρi + s, this implies that the field
attenuation after reflection can be computed using:

|E| = |E0|
√

ρ1ρ2

(ρ1 + s)(ρ2 + s)
(23)

where |E0| is the field at reflection point ~M . This attenuation has to be multiplied by the reflection coefficients
which can be determined from the slab-approximation of the wall (see Figure 3).

~Er = ~Ei

[
Γ +

∞∑
n=1

(1 + Γ) (−Γ)2n−1 (1− Γ) e−2nsαe−2jnsβejnk0d sin θ

]
(24)

Γg = Γ

[
1−

(
1− Γ2

)
e−2sαe−j2sβejk0d sin θ

(1− Γ2) e−2sαe−j2sβejk0d sin θ

]
(25)

3.3. Case Study: Brussels Airport Terminal
At Brussels airport, a few years ago a new terminal was build. This A-terminal has a curved shape, to

reduce the influence on the Instrument Landing System (ILS) of the neighbouring runway. This ILS systems
allows blind landings, and thus has to be very reliable. Using a curved shape, the effect of this new terminal
was reduced radically. Figure 12 shows the effect of a rectangular building (left) and a curved building (right)
on the differnce pattern of the ILS system (zero along the runway). Note that the buiding was approximated
by a cylinder with a horizontal axis, which comes close to the current shape of this A-terminal. One can clearly
see that in the zone where reflections can occur (between 3720 and 5200m along the x-axis), the effect of the
cylindrically shaped building is much smaller.

Figure 12: Comparsion between rectangular shaped (left) and curved shaped (right) A-terminal for the
difference-pattern of the ILS system.

4. Conclusion
In this paper we investigated the influence of a cylindrical obstacle on the electromagnetic signal. Though it

is not presented as a part of the EPICS software yet, new routines based on Geometric Optics (GO) have been
written and tested to predict penetration, reflection and diffraction of electromagnetic fields around cylindrical
obstacles as a step in a future implementation in EPICS.
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