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Abstract—This paper presents the results of profile inversion of multi-frequency electromagnetic scattered
field data, measured by the Institute Fresnel, Marseille, France, from cylindrical objects, both for TM and
TE illuminations. The reconstructions are obtained by applying the Multiplicative Regularized Contrast Source
Inversion (MR-CSI) method. The results show that the MR-CSI method successfully performs ‘blind’ inversion of
a wide class of scattered field data. Further, we also show that by inverting both TM and TE data simultaneously,
a more accurate reconstructed image can be obtained.

1. Introduction
We discuss the performance of the Contrast Source Inversion (CSI) method [1, 2], enhanced with a Mul-

tiplicative Regularization technique (MR-CSI) [3]. The MR-CSI method has been applied to invert the first
set of data measured by the Institut Fresnel, Marseille, France [4]. The inversion results obtained using the
MR-CSI method from these first Fresnel data sets were presented in [5]. Following these experiments, the MR-
CSI method has been improved by the introduction of the so-called weighted L2-norm regularizer, see [6]. The
inversion results of the first Fresnel data set using the MR-CSI method with weighted L2-norm regularizer can
be found in [7].

With this version of the MR-CSI method we demonstrate the reconstructions from the second set of data
measured by the Institut Fresnel. We carry out a ‘blind’ inversion of these data sets without explicitly taking
into consideration any a priori information regarding the type of objects (either dielectric or metallic) to be
reconstructed. In all cases we reconstruct both the permittivity and the conductivity of the unknown objects.
The only a priori information which is used in the inversion is the positivity constraint on both permittivity
and conductivity. The inversion results show that the MR-CSI method seems to handle the experimental field
data very well. Furthermore we will show that by inverting both TM and TE data simultaneously we are able
to arrive at more accurate reconstructed images.

2. Methodology
The Institute Fresnel experimental setup consists of a transmitting and a receiving antennas, both of which

are double-ridged horn antennas. The antennas are moved on a circular rail around the object(s). The objects
are elongated in the direction perpendicular to the plane in which the antennas are rotated (i. e., the plane of
measurement), that a two-dimensional (2D) model is appropriate. In the plane of illumination, we choose a
2D rectangular test domain D containing the object(s). The transmitting antenna illuminates the objects from
different locations distributed equidistantly around the object. We use the subscript j to denote the measured
frequency and the subscript s to denote the dependence on the transmitter position. The receiving antenna
measures the total field and the incident field from a number of different locations distributed equidistantly
around the object. The scattered field, which is needed in the inversion, can then be found by subtracting the
incident field from the total field.

The experimental data are collected at a number of frequencies with time factor exp(−iωjt) where i2 = −1,
ωj is the radial frequency and t is time. We introduce the vectors p and q as the spatial positions in 2D. We use
the Maxwell model for the constitutive parameters of the object. Hence the contrast function for each frequency
is defined as follows:

χj(q) =
ε(q)− ε0

ε0
+ i

σ(q)
ωjε0

, (1)

where ε and σ denote the permittivity and conductivity, which are frequency independent. The symbol ε0

denotes the permittivity in vacuum. Since ε and σ are frequency independent, it is obvious that in the inversion
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we need only to invert for one value of the contrast function. Let χ1 be the contrast function value at the angular
frequency ω1, then the other values of the contrast as a function of frequency can be calculated through:

χj(q) = Re[χ1(q)] + i
ω1

ωj
Im[χ1(q)]. (2)

Since all the objects lie inside a test domain D, the contrast function is therefore non-zero inside D and zero
elsewhere.

In the TM−case where the non-zero component of the electric field is the only one parallel to the cylindrical
objects, we deal with a scalar wave field problem. The domain integral representation for the scattered field as
a function of the total field us, j and the contrast χj is given by

usct
s,j (p) = KTM

j [χjus,j ] = k2
0,j

∫

D

gj(p, q)χj(q)us,j(q)dv(q), p ∈ S, (3)

where k0,j = ωj
√

ε0µ0 is the wave number in free-space and S is the data domain where the transmitter and
receiver are located. The scalar homogeneous Green function is given by

gj(p, q) =
i

4
H

(1)
0 (k0,j |p− q|), (4)

where H
(1)
0 denotes the first kind Hankel function of zero order.

In the TE−case, the field quantities are two-components vectors representing the electric field components
in the transversal plane of the cylindrical objects. The domain integral representation for the scattered field
vector as a function of the total field us,j and the contrast χj is given by

usct
s,j (p) = KTE

j [χjus,j ] = (k2
0,j +∇∇·)

∫

D

gj(p, q)χj(q)us,j(q)dv(q), p ∈ S, (5)

where ∇ is the spatial differentiation operator with respect to p.
The TM and TE total field, and the contrast inside the test domain D satisfy the following integral equation:

uinc
s,j (p) = us,j(p)−KTM

j [χj,nus,j,n], uinc
s,j (p) = us,j(p)−KTE

j [χj,nus,j,n], p ∈ D (6)

where the operators KTM
j [χjus,j ] and KTE

j [χjus,j ] are defined in (3) and (5), for the TM-case and TE-case
respectively. Eqs. (3), (5) and (6) are the basic equations for developing any inversion algorithm based on the
integral equation formulation. The goal of solving the inverse scattering problem can be formulated as follows:
Solve (3) or (5) to obtain the contrast χ1 on D from the knowledge of the scattered field usct

s,j on S and the
incident field uinc

s,j on D subject to the necessary condition that the total field us,j on D and the contrast χ1 on
D satisfy the integral equation in (6).

We consider the inverse scattering problem as an optimization problem where, in each iteration n, we update
the contrast sources ws,j,n = χjus,j,n and the contrast χj,n alternatingly, by minimization of the cost function.
For the TM inversion the cost function is given by

Fn(χ1,n, ws,j,n)=

[∑
s,j ‖usct

s,j −KTM
j [ws,j,n]‖2S∑

s,j ‖usct
s,j‖2S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2D∑

s,j ‖χj,n−1uinc
s,j ‖2D

]∫

D

|χ1,n(p)|2 + δ2
n

|χ1,n−1(p)|2 + δ2
n

dv(p), (7)

where

us,j,n = uinc
s,j + KTM

j [ws,j,n], δ2
n =

1
∆2

∑
s,j ‖ws,j,n−1 − χj,n−1us,j,n−1‖2D∑

s,j ‖χj,n−1uinc
s,j ‖2D

(8)

and ‖ · ‖2S and ‖ · ‖2D denote the L2-norm on the data domain S and the object domain D, respectively. The
symbol ∆ denotes the mesh size of the discretization grid. In this CSI method, we use the back-propagation step
to arrive at initial estimates for the contrast sources and the contrast. After the initial step, in each iteration
the contrast sources and the contrast are updated alternatingly each by using one conjugate gradient step. The
optimization process may be terminated if one of the following stopping conditions is satisfied:

• The difference between the normalized data error Fn at two successive iterates, n-th and (n − 1)-th, is
within a prescribed error quantity (it set to be 10−5).
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Figure 1: The configuration used to obtain the data sets FoamMetExtTM.exp and FoamMetExtTE.exp.

• The total number of iterations exceeds a prescribed maximum Nmax=512.

The a priori information that the permittivity and the conductivity are positive are implemented by enforcing
the negative value to zero after each iteration. This simple procedure is employed in all of the inversion runs.
Details of this so-called MR-CSI method for multi-frequency problem can be found in [5]. However the procedure
to update the contrast function is replaced by the improved version in [7]. For the TE inversion the cost function
in (7) is replaced by

Fn(χ1,n, ws,j,n)=

[∑
s,j ‖usct

s,j −KTE
j [ws,j,n]‖2S∑

s,j ‖usct
s,j‖2S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2D∑

s,j ‖χj,n−1uinc
s,j ‖2D

] ∫

D

|χ1,n(p)|2 + δ2
n

|χ1,n−1(p)|2 + δ2
n

dv(p), (9)

where
us,j,n = uinc

s,j + KTE
j [ws,j,n]. (10)

Further, for joint TM and TE data inversion, the cost function to be minimized is given by

Fn(χ1,n, ws,j,n, ws,j,n) =

[∑
s,j ‖usct

s,j −KTM
j [ws,j,n]‖2S∑

s,j ‖usct
s,j‖2S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2D∑

s,j ‖χj,n−1uinc
s,j ‖2D

+

∑
s,j ‖usct

s,j −KTE
j [ws,j,n]‖2S∑

s,j ‖usct
s,j‖2S

+

∑
s,j ‖ws,j,n − χj,nus,j,n‖2D∑

s,j ‖χj,n−1uinc
s,j ‖2D

]

∫

D

|χ1,n(p)|2 + δ2
n

|χ1,n−1(p)|2 + δ2
n

dv(p). (11)

3. Numerical Results
In this proceeding paper we only show the inversion results of the data sets FoamMetExtTM.exp and

FoamMetExtTE.exp. The inversion results of other data sets will be presented during the conference. These
data sets FoamMetExtTM.exp and FoamMetExtTE.exp are obtained by measuring a configuration as shown in
Fig. 1. This configuration consists of one circular dielectric cylinder with a relative permittivity value of εr = 1.45
with a diameter of 80 mm and one metallic cylinder with a diameter of 28.5mm. In the experiment, there are 18
transmitters distributed uniformly on a circle with a radius of 1.67 m from the center of the experimental setup.
For each transmitter the data are measured using 241 receivers located on a circle with a radius of 1.67 m. The
data are collected at 17 frequencies in the range of 2–18GHz. In the experimental setup the fields are generated
and received by horn antennas. However as we previously argued, the problem is predominantly 2D. Hence
both receivers and transmitters are approximated as line receivers and line transmitters. Therefore, we carry
out the calibration procedure outlined in [5].
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Figure 2: Reconstruction of the configuration with two disjoint cylinders, a dielectric one and a metallic one,
for TM data polarization (data set: FoamMetExtTM.exp) (a) and TE data polarization (data set: FoamMe-
tExtTE.exp) (b); and for joint inversion of both TM and TE data polarizations (c).

In the inversion we take a test domain D of 16.775 cm by 16.775 cm. The test domain D is discretized into
122 by 122 rectangular subdomains. The side length of each subdomain is 0.1375 cm. The wavelength at 18GHz
is 1.67 cm, hence the width and height of the test domain D is 10 time the wavelength in vacuum. The data for
different frequencies are inverted simultaneously. However, in the figures we plot the complex contrast function
χ1 only. This is the complex contrast at the lowest frequency.

The reconstructed images from the TM and TE data sets are shown in Figs. 2(a) and (b). The left plots
give the distribution of the real part of the reconstructed contrast function and while the right plots give
the distribution of the imaginary part of the reconstructed contrast function. The inversion results from TM
data set (see Fig. 2(a)) show that the metallic cylinder is retrieved with real and imaginary parts having the
same order of magnitude. These inversion results also show that there is an ambiguity in the inversion. In
principle, when carrying out the inversion of a perfectly conducting cylinder one can only reconstruct uniquely
the boundary of the object. Inside the metal object the contrast sources are invisible, with the consequence that
any contrast inside the object may be arbitrarily arrived at. The small circular object with a large permittivity
value appearing in the image of Re(χ1) is obviously an artefact of the inversion algorithm. However since the
reconstructed circular object in Re(χ1) lies completely inside the circular cylinder in Im(χ1), one can conclude
that we are dealing with a metallic object. On the other hand, the imaginary parts of the contrast of the
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TE inversion do not exhibit any significant features (see Fig. 2(b)). However the shape of the large dielectric
cylinder is better reconstructed using the TE inversion than the one using the TM inversion.

Next we invert both the TM and TE data simultaneously. The results of this joint inversion are given in
Fig. 2(c). By inverting both TM and TE data simultaneously we obtain an improved reconstructed image of
the large dielectric cylinder. Furthermore the small artefact in the image of Re(χ1) is obviously lied completely
inside the circular cylinder in Im(χ1). Hence, we can conclude that by inverting both the TM and TE data
simultaneously we can obtain more accurate reconstructed images than by inverting the TM and TE data sets
separately.

4. Conclusions
In view of the present results and our crude approximation of the transmitting and receiving antennas, the

Multiplicative Regularized Contrast Source Inversion method seems to be very robust and is capable of ‘blindly’
handling a wide class of inverse scattering problems. Finally we note that by inverting both TM- and TE-data
simultaneously, we can obtain more accurate reconstructed images.
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