Recent Advances on the Use of Kernel-based Learning-by-examples Techniques for Electromagnetic Subsurface Sensing

M. Benedetti, M. Donelli, D. Franceschini, A. Rosani, A. Boni, and A. Massa University of Trento, Italy

To return areas contaminated with unexploded ordnance (UXO) and anti-tank/anti-personnel landmines to a civilian use, the ordnances should be obviously removed. Such a process is time-expensive and involves complex acquisition procedures. Several solutions have been proposed based on various methodological approaches, which consider different sensor modalities such as ground-sensors or synthetic aperture radars. These techniques are aimed at achieving the following goals: (a) correctly localizing a large number of dangerous targets; (b) reducing the false-alarm rate; (c) reducing the time devoted to the detection process. In such a framework, electromagnetic approaches based on learning-from-samples (LFS) techniques [1] have been proposed for the on-line (after the training phase performed off-line) detection of subsurface objects. The detection process is recast as a regression problem where the unknowns (i.e., geometric and dielectric characteristics of the target) are evaluated from the data (i.e., the value of the scattered field) by approximating the data-unknowns relation through an off-line data fitting process (training). LFS regression-based approaches demonstrated their effectiveness in dealing with detection processes where a limited number of unknowns (i.e., single object) is considered. However, because of the complexity of the underlying architecture, some difficulties occur when a larger number of unknowns (i.e., multiple objects) is taken into account. From a structural point-of-view, the regression technique does not permit one to simultaneously identify multiple positions. As a consequence, LFS regression-based approaches turn out to be very effective for the detection of a single (or few organized in a single cluster of objects) buried object. It should be pointed out that the identification of free-areas and an estimate of the concentration of subsurface objects might be enough in several situations. Then, the goal could be moved from the "object detection" to the "definition of a risk map" [2]. Consequently, a classification approach, instead of a regression one, should be employed. In this contribution, the classification approach based on a LFS technique preliminary presented in [3] for an on-line sub-surface sensing is analysed and compared to state-of-the-art classification approaches. Starting from the knowledge of the scattered field values collected above the surface, the method is aimed at defining a risk map of the domain under test. By considering a SVM-based classifier, the proposed method estimates the a-posteriori probability of the presence of subsurface dangerous objects. The advantages of the use of such an instance-based classification method can be summarized as follows: (a) no *a-priori* knowledge about the system that generated the data is required; (b) simplicity and reliability of the resolution algorithm; (c) possibility of designing optimal classifier based on the theory by Vapnik and Chervonenkis; (d) easy implementation in hardware for real-time applications.

REFERENCES

- Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried object detection," *IEEE Trans. on Geoscience and Remote Sensing.*, Vol. 41, 927–931, Apr. 2003.
- Caorsi, S., E. Bermani, A. Boni, M. Conci, M. Donelli, and A. Massa, "Learning-by-examples strategies for sub-surface imaging: from regression to classification approach," *PIERS2003*, USA, 118, Oct. 2003.
- Caorsi, S., E. Bermani, A. Boni, M. Donelli, and A. Massa, "On the effectiveness of kernel-based learningby-examples techniques for electromagnetic subsurface sensing," *PIERS2004*, Italy, S3.02, Mar. 2004.