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Non-lorentzian Electromagnetic Resonances
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In quantum mechanics, scattering amplitude exhibits resonance behavior if the energy of scattered particles
is close to the energy of one of the quasi-stationary states, if such quasi-stationary states exist. For potentials
which decay fast enough at infinity, the resonance cross sections, as functions of energy, can be accurately
approximated by Lorentzians. A similar phenomenon can be found in electromagnetic scattering. Consider
scattering of monochromatic waves with the frequency ω by a homogeneous non-magnetic scatterer of arbitrary
shape characterized by the dielectric function ε(ω). We can define an electromagnetic eigenstate as a solution
to

∫
V

Ĝ0(ω; r, r′)Pn(ω; r′)d3r′ = ξn(ω)Pn(ω; r). Here V is the volume occupied by the scattering material,
Ĝ0(ω; r, r′) is the frequency-domain, dyadic free-space Green’s function for the Maxwell’s equation which gives
electric field at the point r due to a point dipole oscillating at frequency ω at the point r′, Pn(ω; r) is the n-th
polarization eigenstate and ξn(ω) is the corresponding eigenvalue (generally, complex). The extinction cross
section can be written as a sum over the eigenmodes, i.e., σe =

∑
n fn(ω)/[z(ω) − ξn(ω)], where fn(ω) is the

generalized oscillator strength for the n-the eigenmode which has no singularities in the complex plane as a
function of ω and z(ω) is the spectral variable defined by z(ω) = (4π/3)[ε(ω)+2]/[ε(ω)−1] [1]. Electromagnetic
resonances take place when the denominator in the above equation is in some sense small. However, the
imaginary part of the denominator can not vanish due to energy conservation considerations. Therefore, we
define resonance frequencies ωn as solutions to Re[z(ωn) − ξn(ωn)] = 0. If ω is close to one of the resonance
frequencies ωn, and if ξn(ω) and fn(ω) change slowly in the vicinity of ωn, one can make the quasi-particle pole
approximation and write σe ≈ [fn(ωn)/z′(ωn)]/[ω−ωn + iγn], where γn = Im[z(ωn)− ξ(ωn)]/z′(ωn) and prime
denotes differentiation. This resonance has the typical Lorentzian structure with the lifetime τn = 1/γn which
is determined by the sum of Ohmic (Im[z(ωn)]) and radiative (−Im[ξ(ωn)]) losses.

In scatterers which are small compared to the external wavelength, the quasi-particle pole approximation
is, typically, quite accurate. This is due to the fact that, within the quasistatics, the real parts of ξn(ω) are
ω-independent an satisfy −8π/3 < Reξn < 4π/3 [2]. In extended systems these statements are, generally, not
valid. In particular, in a long periodic chain of nanospheres, real parts of eigenvalues ξn diverge logarithmically
near certain frequencies which are determined from the synchronism condition [3]. This divergence leads to
electromagnetic resonances which are essentially non-Lorentzian. In particular, their width is determined not
by relaxation but by the range of frequencies in which the equation Re[z(ω) − ξn(ω)] = 0 is approximately
satisfied. It was shown that these resonances are super-exponentially narrow with the width being proportional
to the factor exp[−C(h/a)3], where C is a numerical constant of the order of unity, h is the period of the chain and
a is the nanosphere radius [4]. The divergence of eigenvalues can also lead to narrow spectral holes which were
already reported in [3]. Recent advances in nanofabrication have reinvigorated interest in one-dimensional chains
of nanoparticles. A dramatic narrowing of spectral lines and unusual properties electromagnetic resonances were
found numerically in chains of large but finite length in [5]. The origin and properties of these resonances in
infinite chains were discussed theoretically in [4]. Theoretical treatment of finite chains was recently given in
[6].
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