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To analyze lossy, frequency dependent media over a wide RF bandwidth with FDTD, it is important to
capture the wave velocity and attenuation with a simple, efficient model. Using a single pole rational function
of the Z-transform variable (Z = ejw∆t) to model media conductivity along with constant real dielectric constant,
it is possible to generate a supplemental discretized time domain equation which closely matches measured values
across more than a decade of frequency. The agreement between measured and modeled propagation constant
and decay rate for more than 50 materials are often to within 5%. This formulation avoids memory-intensive
convolution operations and is at least as accurate as Debye models.

In the FDTD formulation, with electric field sampled at integer time steps E
n
, and magnetic field sampled

at half-integer steps H
n− 1

2 , Ampere’s Law presents a difficulty with the current term, which is computed using
electric field but which must be available at the magnetic field time instant. This is accomplished by choosing
an average current value between adjacent time steps J

n− 1
2 = σ

2 (E
n
+E

n−1
). The central finite differences used

in FDTD are second order accurate, while the averaging over adjacent time steps is only first order accurate.
A more precise solution is available using the Z-transform formulation of Ampere’s Law:

∇×H(Z) =
1− Z−1

∆t
∈ E(Z) + Z−

1
2 σ(Z)E(Z) (1)

with the understanding that E(Z) and H(Z) transform to integer and half-integer time samples. The Z-
transformed current J(Z) = σ(Z)E(Z), but only when the current values are sampled at the same time instances
as the electric field. To keep the time sample alignment of current in synchronism with magnetic field, the last
term on the right hand side of Eq. 1 transforms to J

n− 1
2 . Keeping the finite difference equation form of

the constitutive relation relating shifted current to electric field, the new rational function representation of
conductivity is:

Z−
1
2 σ(Z) =

b0 + b1Z
−1 + b2Z

−2 + b3Z
−3

1 + a1Z−1
(2)

With this choice, the entire right hand side of Eq. 1 remains a rational function of integer powers of Z, and thus
it can be readily converted to finite difference form. The additional term b3Z

−3 in Eq. 2 becomes necessary to
ensure three point fitting, with proper curvature, of the conductivity function to measured data. The real part
of conductivity, based on Eq. 2, is:

Re{σ(Z)} =
(b0 + b1 + a1(b1 + b2)) cos ω∆t/2 + (b2 + a1(b0 + b3)) cos 3ω∆t/2 + b3 cos 5ω∆t/2

1 + 2a1 cos ω∆t + a2
1

(3)

with five parameters b0, b1, b2, and b3 to eb determined from matching to measured data. The parameter a1 is
adjusted to satisfy special von Neumann stability conditions requiring that all zeros of the stability equation be
within the unit circle for a particular grid spacing interval.
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