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Abstract—A new integral equation formulation is introduced for solving, in the frequency domain, the problem
of electromagnetic scattering by an impedant (IBC) or perfect electric/magnetic (PEC/PMC) 3D body of
arbitrary shape. It is based firstly, on a special application of the equivalence principle [2] where the 0-field
exterior domain is filled with another impedant medium and, secondly, on the widely used PMCHW (Poggio,
Miller, Chang, Harrington and Wu) formulation which forces field continuity through the scatterer surface [3].
Unlike other IBC formulations such as [4], this one also applies to PEC/PMC. Furthermore, in this last case,
it appears to stabilize the numerical scheme in the vicinity of eigen frequencies. We will provide proofs and
conditions of the wellposedness of the problem for impedant as well as for PEC/PMC bodies.

1. Introduction
Since the pioneering work of Leontovitch, Impedance Boundary Condition (IBC) has been widely used to

simplify electromagnetic scattering problems. It simulates the material properties of a surface by forcing surface
electric and magnetic fields to respect: Etan = Rn×Htan, R ∈ C [1] where n is the unit normal to the surface
pointing into the outside of the impedant medium. It is absorbing when Re(R) > 0. Range of validity of IBC
for imperfect conductors has been discussed in [1]. Many specific implementations have been surveyed, but only
a few general numerical method are available. The last ones are from Lange [5] and Bendali [4]. Beyond the
algebric approach, [5] appears to be very similar to the proposed new formulation. It mimics the widely used
PMCHW (Poggio, Miller, Chang, Harrington and Wu) method [3] and introduces a specific parameter which
behaves like an impedant “complement medium” whose impedance would be equal to the scatterer’s one. But,
none of [5] and [4] methods extends to perfect electric (PEC) or magnetic (PMC) conductors. The proposed new
formulation follows a more physical approach. It is based on a special application of the equivalence principle
[2] where the 0-field exterior domain is filled with another impedant medium and on the use of the PMCHW
technic. It does not require scatterer and complement domain impedances to be the same and, most of all, it
extends to PEC and PMC bodies (Rs −→ 0 or ∞).

This paper describes a way to generalize [5] formulation. Before posing the concerned integral equation
system, we briefly remind how the initial problem is decomposed. The well posedness of the formulation is
then demonstrated. Finally we give some numerical illustrations which validate this approach and point out its
advantages.

2. Subproblem Decomposition
The equivalent principle [2] conduces to decompose any problem into several subproblems, each one being

dedicated to a given portion of the original problem. Given a subproblem, we denote “active domain” the piece
of problem extracted from the original one. The space surrounding an active domain is named “complement
domain”. Fields are expected to be null there. 0 field being a Maxwell Equation solution whatever the medium
within a source free domain, this allows to choose any medium for the complement domain. This property is
often used to transform a subproblem into a free space problem by replacing a scatterer by free space. It is
seldom used in other cases. The proposed formulation uses it twice: once, classically, in the first subproblem,
by filling the scatterer volume with free space and, another time, in the second subproblem, by filling the
complement domain with an impedant medium.

In order to illustrate this approach, let us consider a scatterer in free space lighted by a plane wave. We
refer by DS to the region of space embodying the scatterer. Its surface is denoted Γ. We refer by DE (“exterior
domain”) to the rest of the space interesting the problem. Normal vectors will always be supposed to be unit
vectors pointing outside the specified domain: nS and nE pointing from DS , respectively DE , toward DE ,
respectively DS . The initial problem is decomposed into 2 subproblems as follow (Fig. 1):

PbE: the exterior problem. It includes: an active domain DE containing free space, a complement domain
CDE filled with free space, a set of surface electric and magnetic fictive currents, respectively JE and ME on
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Figure 1: subproblems decomposition.

Γ, impressed sources generating a plane wave incident field. It is well known that this construction leads to a
standard problem where fictive sources radiate in a free space environment.

PbI: the interior problem. It includes: an active domain DS containing the impedant scatterer with local
impedance Rs, a complement domain CDS , filled with an impedant medium caracterised by its local impedance
Rc, a set of surface electric and magnetic fictive currents, respectively JI and MI on Γ, no impressed sources.
Due to the complement choice, fields must satisfy an impedance bondary condition on both sides of interface
Γ. On the scatterer side of Γ (point denoted xs):

Etan(xs) = RsnS ×Htan(xs) (1)

On the complement side of Γ (point denoted xcs):

Etan(xcs) = −RcnS ×Htan(xcs) (2)

3. Integral Equation Formulation
Once all subproblems posed, we evaluate, for each subroblem independantly, the scattered field on the active

side of the interface radiated by fictive currents.

PbE radiating operators In a free space environment, fields radiated by surface currents are controlled by
the familiar Stratton-Shu and jump relations on the interface. The field observed at point xe on the DE side of
surface Γ is given by (Refer to [4] for expressions of Z and operators T and K):

EpbE
tan (xe) = Einc

tan(x) + ikZ(TJE)tan + (KME)tan + 1
2ME × nE

HpbE
tan (xe) = Hinc

tan(x)− (KJE)tan + ikZ−1(TME)tan − 1
2JE × nE

PbI radiating operators A right combination of the usual boundary conditions [2] that links E and H fields
on both side of a current sheet running on Γ

{
EpbI

tan(xs) = EpbI
tan(xcs) + MI × nS

HpbI
tan(xcs) = HpbI

tan(xs) + JI × nS
(3)
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and IBC relations (1 ) and (2) leads to the E and H field expression:{
EpbI

tan(xs) = Rs

Rc+Rs
(−RcJI + MI × nS)

Hpb1
tan(xs) = − Rc

Rc+Rs
(J1 × nS + MI

Rc
)

(4)

When the scatterer medium tends toward PEC (Rs → 0), (4) reduces to:{
Epb1

tan(xs) = 0
Hpb1

tan(xs) = −J1 × nS − M1
Rc

Beyond there simplicity, they appear to be local operators, the numerical implementation of which does not
require any long calculation and leads to a sparse matrix.

Connection— According to PMCHW, integral equations are built by forcing equality between surface fields
associated to both subproblems:

{
JI = −JE

MI = −ME
and

{
Rs

Rc+Rs
(−RcJI + MI × nS) = Einc

tan(x) + ikZ(TJE)tan + (KME)tan + 1
2ME × nE

− Rc

Rc+Rs
(J1 × nS + MI

Rc
) = Hinc

tan(x)− (KJE)tan + ikZ−1(TME)tan − 1
2JE × nE

(5)

4. Well Posedness
It worth pointing out that the formulation is not a strict application of the equivalence principle. In

particular, nowhere it imposes 0 fields outside active domains. This fundamental characteristic must be proven
independantly. In this intent, we define a new subproblem called “complement problem” PbC. It is built from
the union of the complement domains of both subproblems, CDE and CDS plus their interface Γ.

According to the way subproblems are built, PbE and PbI solutions restricted to their respective complement
domains CDE and CDS are solutions of the complement problem PbC:

on CDS side
{

EpbC
tan (xcs) = EpbI

tan(xcs)
HpbC

tan (xcs) = HpbI
tan(xcs)

and on CDE side
{

EpbC
tan (xce) = EpbE

tan (xce)
HpbC

tan (xce) = HpbE
tan (xce)

.

Furthermore, PMCHW formulation forces equality between surface fields located into PbE and PbI ac-
tive sides. By applying (3), one can easily prove that PMCHW formulation works as well with fields ob-

served into the complement sides:
{

EpbI
tan(xcs) = EpbE

tan (xce)
HpbI

tan(xcs) = HpbE
tan (xce)

. Consequently, in the Complement problem
{

EpbC
tan (xcs) = EpbC

tan (xce)
HpbC

tan (xcs) = HpbC
tan (xce)

, tangential components of field are continuous through Γ and, finally, PbC appears

to be a source free problem. AS FAR AS IT IS NOT A SINGULAR PROBLEM subject to eigen modes, its
unique solution is ZERO. This proves that field solutions are equal to 0 in all complement domains whatever
the subproblem.

Consequently, PbI and PbE solutions are the same as the ones provided by the equivalence principle, com-
bination of which is known to be the unique solution of the original problem.

Finally, we can conclude that the well posedness condition requires that the problem built on the complement
domains union is a non singular problem.

5. Numerical illustrations
Numerical results obtained with a unit sphere meshed with planar triangles (750 edges) confirm the formu-

lation validity and advantages. Equivalent currents and test functions are expanded using RWG elements [6].

• Accuracy: in the case of an IBC sphere (Rs = 100), we have compared numerical results obtained from
three formulations: the new formulation, CERFACS implementation of Leontovitch problem [4] and Mie
series with boundary condition (1) imposed at the sphere surface [2]. The sphere is lighted from the
bottom (+z direction) by a x-polarised plane wave which wave number is set to k = 2. Complement
medium impedance is Rc = 2. Fig. 2 reports the radar cross section (RCS) observed in different direction
using the 3 methods. Angle 0 corresponds to the direction of incidence. The 3 resulting curves are in
perfect agreement. New formulation and CERFACS RCS results are strictly superimposed. This visual
feeling is confirmed by the relative errors values on equivalent currents computed via the 3 methods (see
Tab. 1).

• Numerical stabilization: the behaviour of one selected RWG current element of a PEC sphere (Rs = 0)
has been followed when wave number k varies in the vicinity of the first eigenfrequency of the spherical
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cavity: ke = 2, 76. In this case, we use edge excitation by turning on edge 1 (excitation vector set to[
1 0 0 . . . 0 0

]
). Fig. 3 reports real and imaginary parts of the observed flux as a function of k

when EFIE or proposed formulation is used. One can easily notice that the resonance peak, that clearly
appears with EFIE, is suppressed by the new method.The proposed formulation is thus no subject to
spurious solutions when Rs −→ 0 or ∞.

Table 1: Equivalent current relative error.

degree of freedom formulations error

electric Cerfacs / New formulation 1,6%

electric New formulation/ Mie 1,7%

magnetic New formulation / Mie 1,6%
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Figure 2: RCS obtained by 3 methods.
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Figure 3: Real and imaginary part of current value
computed by EFIE and new formulation.

4. Conclusion
The proposed formulation provides practitioners in computational electromagnetism with a general well

posed method to deal with all kinds of impedant bodies, from usual IBC medium up to very good and even
perfect conductors without any risk of spurious solution. Interior problem local operators are very easy to
implement using RWG elements. They generate a negligible extra computation compared to the one needed
for the exterior problem. Since magnetic currents must always be taken into account, even for PEC/PMC, the
main drawback is the doubling of the number of degrees of freedom compared to [4]. In addition, it worth
noting that the well posedness condition which states that the complement problem must be non singular could
be extended to all forms of PMCHW formulations.
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