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Abstract—This paper examines the problem of complex amplitude estimation of a multichannel signal in the
presence of colored noise with unknown spatial and temporal correlation. A number of amplitude estimators are
developed, including the optimum maximum likelihood (ML) estimator, which involves nonlinear optimization,
and several suboptimal but computationally more efficient estimators based on least-squares (LS) or weighted
LS (WLS) estimation. The Cramér-Rao bound (CRB) for the estimation problem is presented. Numerical
results are presented to illustrate the performance of these estimators with or without training data.

1. Introduction
Amplitude estimation occurs in numerous signal processing applications. A survey of amplitude estimation

techniques for sinusoidal signals with known frequencies in colored noise is found in [1]. While [1] is primarily
concerned with single-channel sinusoidal signals, we consider amplitude estimation of an arbitrary multichannel
signal observed in space and time using a sensor array. The observed data is contaminated by a spatially and
temporally correlated disturbance signal with unknown correlation. Among other applications, this problem is
encountered in an airborne radar system equipped with multiple antennas (e. g., [2]), where the multichannel
signal refers to the space-time steering vector of the antenna array, the amplitude refers to the radar cross section
(RCS) of a target, and the disturbance lumps together the thermal noise, radar clutter, and other interferences.
Amplitude estimation within such a context would be useful for estimating the spatial and temporal correlation
of the disturbance, developing effective target detectors, and finding solutions to several other relevant problems.

To account for its temporal and spatial correlation, our approach is to model the disturbance as a multichan-
nel autoregressive (AR) process. Using extensive real radar data, [2] has shown that multichannel AR models
are appropriate and offer efficient representation of the disturbance signal in airborne radars. Our paramet-
ric approach to the modeling of the disturbance is another major distinction compared to the non-parametric
approach of [1]. Based on the parametric approach, our problem of interest is to find estimates of the signal
amplitude, the AR coefficient matrices, and the spatial covariance matrix of the multichannel signal that drives
the AR model. In the sequel, we first examine the optimum ML detector, and show that it involves nonlinear
optimization. We then introduce several suboptimal but computationally more efficient LS and WLS amplitude
estimators, which can be used to initialize the nonlinear searching involved in the ML estimator. The CRB
for the estimation problem is presented as a performance baseline. In our numerical comparison of the differ-
ent estimators, we focus on the case with no or very limited training data, which is of particular interest for
applications in non-stationary or dense-target environments (e. g., [3]).

2. Data Model and Problem Statement
The observed noisy multichannel signal x0(n) can be written as

x0(n) = αs(n) + d(n), n = 0, 1, . . . , N − 1, (1)

where all vectors are J×1 vectors, J is the number of spatial channels, N is the number of temporal observations,
s(n) denotes the signal vector that is assumed known but with unknown complex amplitude α, and d(n) denotes
the disturbance that is correlated in space and time. In addition, there are a set of disturbance-only training
(i. e., α = 0) data xk(n), k = 1, 2, . . . , K and n = 0, 1, . . . , N − 1, available to assist amplitude estimation. In
radar systems, training data may be obtained from range cells adjacent to the test cell. However, training is
generally limited or may even be unavailable, especially in non-stationary or dense-target environments [3]. We
consider amplitude estimation with and without training; in the later case, we have K = 0.

Let xk , [xT
k (0), xT

k (1), . . . , xT
k (N−1)]T , and d and s are formed similarly from d(n) and s(n), respectively.

It is assumed that the training data {xk}K
k=1 and d are independent and identically distributed (i.i.d.) with
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complex Gaussian distribution CN (0,R), where R denotes the unknown space-time covariance matrix. A
J-channel AR process is used to model the disturbance:

xk(n)− αs(n) = −
∑P

p=1
AH(p){xk(n− p)− αs(n− p)}+ εk(n), k = 0, 1, . . . , K, (2)

where {AH(p)}P
p=1 denote the unknown J × J AR coefficient matrices and εk(n) denotes the driving spatial

noise with distribution CN (0,Q), where Q denotes the unknown J × J spatial covariance matrix. With some
notational abuse, we have α = 0 (i. e., disturbance-only) for k 6= 0 in (2). To focus on the amplitude estimation
problem, we assume the model order P is known. In practice when P is unknown, it can be estimated by using
a variety of model selection techniques [4].

The problem is to estimate the amplitude α, which is the signal parameter of primary interest, as well as
nuisance parameters {AH(n)} and Q, from observations {xk(n)}.
3. Amplitude Estimators

For compact presentation, let AH , [AH(1), . . . ,AH(P )] ∈ CJ×JP which contains all the coefficient matrices
involved in the P -th order AR model, yk(n) , [xT

k (n − 1), . . . ,xT
k (n − P )]T which contains the regression

subvectors formed from the observed signal x0 or the k-th training signal xk, and t(n) , [sT (n− 1), . . . , sT (n−
P )]T , which contains the regression subvectors formed from the steering vector s. In the following, we first
consider the optimal ML estimator, followed by the suboptimal LS and WLS estimators.
3.1. Optimal ML Amplitude Estimator

In Appendix 1, we show that the ML estimator of α is given by

α̂ML = min
α

∣∣∣R̂xx(α)− R̂
H

yx(α)R̂
−1

yy (α)R̂yx(α)
∣∣∣, (3)

where the correlation matrices are given by

R̂xx(α) =
∑N−1

n=P
[x0(n)− αs(n)][x0(n)− αs(n)]H +

∑N−1

n=P

∑K

k=1
xk(n)xH

k (n), (4)

R̂yy(α) =
∑N−1

n=P
[y0(n)− αt(n)][y0(n)− αt(n)]H +

∑N−1

n=P

∑K

k=1
yk(n)yH

k (n), (5)

R̂yx(α) =
∑N−1

n=P
[y0(n)− αt(n)][x0(n)− αs(n)]H +

∑N−1

n=P

∑K

k=1
yk(n)xH

k (n). (6)

Although statistically optimal, there is no closed-form expression for the above ML estimate. The cost function
(3) is a highly nonlinear bivariate function (α is complex-valued). A brute-force exhaustive search over the
two-dimensional parameter space is generally impractical. Alternatively, we can resort to Newton-like iterative
nonlinear searches, providing an initial estimate of α is available. Next, we discuss suboptimal estimators that
can be used for initialization.
3.2. LS Estimator

A linear LS amplitude estimator based on x0 only is given by

α̂LS =
sHx0

sHs
, (7)

which ignores the coloredness of the disturbance signal. Albeit simple, the LS estimator is useful when training
is unavailable. In addition, it can be used in combination with the WLS amplitude estimator presented next
for improved estimation accuracy.
3.3. WLS Estimator

Suppose we have some initial estimates of A and Q, denoted by Â and Q̂, respectively. Then, as shown in
Appendix 2, a WLS amplitude estimator is given by

α̂WLS =

∑N−1
n=P {s(n) +

∑P
p=1 Â

H
(p)s(n− p)}HQ̂−1{x0(n) +

∑P
p=1 ÂH(p)x0(n− p)}

∑N−1
n=P {s(n) +

∑P
p=1 Â

H
(p)s(n− p)}HQ̂−1{s(n) +

∑P
p=1 ÂH(p)s(n− p)}

. (8)

To find initial estimates Â and Q̂, we consider two cases with and without training. First, if training is available
(i. e., K ≥ 1), an ML estimator based on only the training data can be used to estimate A and Q. Following
similar steps in Appendix 1, we can show that the training-only ML estimates are given by
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Â
H

= −R̂
H

yx,tR̂
−1

yy,t, (9)

Q̂ =
1

K(N − P )

(
R̂xx,t − R̂

H

yx,tR̂
−1

yy,tR̂yx,t

)
, (10)

R̂xx,t =
∑N−1

n=P

∑K
k=1 xk(n)xH

k (n), and R̂yy,t and R̂yx,t are correlation matrices formed similarly as in (5) and
(6), however, using only the training signals.

On the other hand, if no training data are available (K = 0), we can create artificially one “training signal”
by by subtracting. α̂LSs(n) from the observed signal, i. e.,

x̄0 , x0 − α̂LSs

where αLS is given by (7). Then, the training-only ML estimator (9) and (10) can be used to estimate A and
Q as if K = 1. Finally, it is noted that once the WLS estimate α̂WLS is obtained, it can be used to update
estimates of A and Q. We can iterate the above procedure a few times.
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Figure 1: MSE of the signal amplitude estimate α̂
versus the input SINR when J = 4, N = 32, and
K = 0.
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Figure 2: MSE of the signal amplitude estimate α̂
versus the input SINR when J = 4, N = 128, and
K = 0.
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Figure 3: MSE of the signal amplitude estimate α̂
versus the input SINR when J = 4, N = 16, and
K = 1.
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Figure 4: MSE of the signal amplitude estimate α̂
versus the input SINR when J = 4, N = 64, and
K = 1.

4. Cramér-Rao Bound
The CRB provides a lower bound on the variance of the parameter estimates obtained by any unbiased

estimators, and it can be used to access the accuracy of various amplitude estimation schemes. It can be shown
that CRB for the signal amplitude estimation is given by
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CRB(α) =

[∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H

Q−1

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}]−1

. (11)

5. Numerical Results
We present numerical results to compare the proposed amplitude estimation schemes. In the following, the

SINR is defined as SINR= |α|2sHR−1s where R is the JN × JN joint space-time covariance matrix of the
disturbance d. For the no training case (K = 0), we consider 1) LS amplitude estimator given by (7); 2) WLS1
amplitude estimator given by (8) with estimates Â and Q̂ obtained by using the artificially created training
signal; 3) WLS2 estimator which extends WLS1 with another iteration; 4) ML amplitude estimator given by
(3). For the case when training is available (K > 0), we consider 1) WLS amplitude estimator given by (8)
along with (9) and (10); 2) ML amplitude estimator given by (3). In both cases, the CRB (11) is included.

Figures 1 and 2 depict the mean-squared error (MSEs) of the various amplitude estimates versus the input
SINR. We can see that 1) the MSE of WLS1 estimator is slightly larger than the CRB when N = 32, but is
close to the CRB when N = 128; 2) as N increases, the MSEs of the WLS1, WLS2, and ML estimators are
getting close to the CRB; 3) the MSE of the LS estimator is away from the CRB even at N = 128.

Figures 3 and 4 depict the MSEs of the various amplitude estimates versus the input SINR when very limited
training is available (K = 1). It is seen that as N increases, the WLS estimates are close to the ML estimates
and the CRB.

6. Conclusion
We have examined the problem of amplitude estimation of a known multichannel signal in the presence of

a temporally and spatially correlated disturbance signal. To deal with temporal and spatial coloredness, the
disturbance signal is modeled as a multichannel AR process with unknown AR coefficient matrices and spatial
covariance matrix. We have derived the ML estimate of the signal amplitude which involves two-dimensional
nonlinear searches. We have also introduced several suboptimal LS and WLS estimators that can be utilized to
initialize the searching.
Appendix 1: Derivation of ML Estimators

The exact maximization of the joint PDF or likelihood function with respect to the unknown parameters
produces a set of highly nonlinear equations that are difficult to solve. For large data records, the likelihood func-
tion can be well approximated by a joint conditional PDF (12) conditioned on {xk(n)}P−1

n=0 }, k = 0, 1, . . . , K [5].
For brevity, the conditional PDF is referred to as the likelihood function henceforth. The loglikelihood function
is proportional to (within an additive constant) [6]

− L ln |Q|−
∑K

k=1

∑N−1

n=P

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]H

Q−1

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]

−
∑N−1

n=P

[
{x0(n)− αs(n)}+

∑P

p=1
AH(p){x0(n− p)− αs(n− p)}

]H

Q−1

×
[
{x0(n)− αs(n)}+

∑P

p=1
AH(p){x0(n− p)− αs(n− p)}

]
(12)

where L = (K + 1)(N − P ). Taking the derivative of the likelihood function with respect to Q and equating
the result to zero produce the ML estimates of Q given α and A:

Q̂(α,A) , 1
L

{∑K

k=1

∑N−1

n=P

[
xk(n) +

∑P

p=1
AH(p)xk(n− p)

] [
xk(n) +

∑P

p=1
AH(p)xk(n− p)

]H

+
∑N−1

n=P

[
{x0(n)− αs(n)}+

∑P

p=1
AH(p){x0(n− p)− αs(n− p)}

]

×
[
{x0(n)− αs(n)}+

∑P

p=1
AH(p){x0(n− p)− αs(n− p)}

]H
}

. (13)

Substituting the above Q̂ back in the likelihood function, we find that maximizing the loglikelihood reduces to
minimizing |Q̂(α,A)|. Therefore, the ML estimates of α and A can be obtained by minimizing |Q̂(α,A)| with
respect to α and A. In turn, we can get the ML estimate of Q by replacing α and A with their ML estimates
in (13). Next, observe that
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LQ̂(α,A) = R̂xx(α) + AHR̂yx(α) + R̂
H

yx(α)A + AHR̂yy(α)A

=
(
AH+R̂

H

yx(α)R̂
−1

yy (α)
)
R̂yy(α)

(
AH+R̂

H

yx(α)R̂
−1

yy (α)
)H

+R̂xx(α)− R̂
H

yx(α)R̂
−1

yy (α)R̂yx(α)
(14)

where the correlation matrices are given by (4), (5), and (6). Since R̂yy(α) is non-negative definite and the
remaining terms in (14) do not depend on A, it follows that Q̂(α,A) ≥ Q̂(α,A)|A=Â(α), where

Â
H

(α) = −R̂
H

yx(α)R̂
−1

yy (α). (15)

When Q̂(α, A) is minimized, the estimate Â
H

(α) of AH will minimize any non-decreasing function including

the determinant of Q̂(α, A)) [7]. Hence, Â
H

(α) is the ML estimate of AH given α. Replacing AH in (14) by

Â
H

(α) yields the ML amplitude estimator (3).
Appendix 2: Derivation of WLS Estimator

Suppose that Q and A are known. Then, taking the derivative of the loglikelihood function (12) and setting
the result to zero yield

α
∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H

Q−1

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}

−
∑N−1

n=P

{
s(n) +

∑P

p=1
AH(p)s(n− p)

}H

Q−1

{
x0(n) +

∑P

p=1
AH(p)x0(n− p)

}
= 0.

(16)

By solving (16), we have the ML estimate of α. It is different from the ML estimate (3) which assumes Q and
A are unknown. In practice, Q and A are unknown. If these matrices are replaced by their estimates Q̂ and
Â, the resulting WLS estimator is given by (8).
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