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Abstract—Adaptive beamforming suffers from performance degradation in the presence of mismatch between
the actual and presumed array steering vector of the desired signal. This idea enlightens us, so we propose a
subspace approach to adaptive beamforming that is robust to array errors based on minimizing MUSIC output
power. The proposed method involves two steps, the first step is to estimate the actual steering vector of
the desired signal based on subspace technique, and the second is to obtain optimal weight by utilizing the
estimated steering vector. Our method belongs to the class of diagonal loading, but the optimal amount of
diagonal loading level can be calculated precisely based on the uncertainty set of the steering vector. To obtain
noise subspace needs eigen-decomposition that has a heavy computation load and knows the number of signals
a priori. In order to overcome this drawback we utilized the POR (Power of R) technique that can obtain noise
subspace without eigen-decomposition and the number of signals a priori. It is very interesting that Li Jian’s
method is a special case where m = 1, and the proposed subspace approach is the case where m → ∞, so we
obtained a uniform framework based on POR technique. This is also an explanation why the performance of
the proposed subspace approach excels that of Li Jian’s method. The excellent performance of our algorithm
has been demonstrated via a number of computer simulations.

1. Introduction
Array signal processing has wide applications in radar, communications, sonar, acoustics, seismology, and

medicine. One of the important tasks of array processing is beamforming. The standard beamformers include
the delay-and-sum approach, which is known to suffer from poor resolution and high sidelobe problems. The
Capon beamformer adaptively selects the weight vectors to minimize the array output power subject to the linear
constraint that the signal of interest (SOI) does not suffer from any distortion [1]. The Capon beamformer has
better resolution and interference rejection capability than the standard beamformer, provided that the array
steering vector corresponding to the SOI is accurately known. In practice, the knowledge of the SOI steering
vector may be imprecise, the case due to differences between the presumed signal steering vector and the actual
signal steering vector. When this happens, the Capon beamforming may suppress the SOI as an interference,
which result in array performance drastically reduced, especially array output signal-to-interference-plus-noise
ratio (SINR) [4].

In the past three decades many approaches have been proposed to improve the robustness of the Capon
beamforming. Additional linear constraints, including point and derivative constraints, have been imposed
to improve the robustness of the Capon beamforming [2, 3]. However, for every additional linear constraints
imposed, the beamformer loses one degree of freedom (DOF) for interference suppression. Moreover, these
constraints are not explicitly related to the uncertainty of the array steering vector. Diagonal loading (including
its extended versions) has been a popular approach to improve the robustness of the Capon beamformer [4].
However, for most of the diagonal loading methods, determining the diagonal loading remains an open problem.
Recently there are some methods been proposed (for examples, [5–7] and reference therein) to this point.

Mismatch between the presumed steering vector of the SOI and the actual one result in drastically reduced
array SINR, therefore if we can estimate actual steering vector of the SOI, robustness of the array will be
improved. In this paper, from the point of view of the subspace we propose a novel robust Capon beamformer,
which involves two steps, the first step is to estimate actual steering vector of SOI, and the second is to calculate
optimal weight by Capon method. The rest of this paper is organized as follows. Section 2 contains background
material. In section 3, the robust Capon beamformer is developed. Computer simulation results illustrating
the performance of the robust Capon beamformer are presented in Section 4. Finally, Section 5 contains the
conclusions.

2. Background

2.1. Signal Model
We consider the standard narrowband beamforming model in which a set of M narrowband plane wave

signals, impinge on an array of N sensors with half wavelength spacing, where M < N . The N × 1 vector of
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received signals is given by

x(tk) =
M−1∑
m=0

a(θm)sm(tk) + n(tk), k = 1, 2, . . . , L (1)

where sm(tk),m = 0, . . . , M − 1; k = 1, 2, . . . , L are the source signals snapshots,

a(θm) = [1, e−jπ sin θm , . . . , e−jπ(N−1) sin θm ]T

is the steering vector in the direction θm, and n(tk), k = 1, 2, . . . , L are the vectors containing additive white
noise samples, L is the number of the snapshots. Also, in this paper, the sources and noise are assumed to be
statistically uncorrelated.

We assume that one of the signals is the desired signal, say s0(t), and treat the remaining signals as in-
terferences. Since s0(t) is uncorrelated with the noise and interferences, the data covariance matrix has the
form,

R = σ2
0a(θ0)aH(θ0) +

M−1∑

k=1

σ2
ka(θk)aH(θk) + Rn , Rs + Ri+n (2)

where Rs = σ2
0a(θ0)aH(θ0), σ2

i = E
{|si(tk)|2} is the power of ith signal, and Ri+n is the interference plus noise

covariance matrix. In practice, the covariance matrix R is estimated by

R̂ =
1
L

L∑
n=1

xnxH
n (3)

where all received signals have zero means and L samples are independent.
2.2. Capon Beamforming

The Capon beamforming is as follows.
Determine the N ×1 vector w0 that is the solution to the following linearly constrained quadratic minimiza-

tion problem,
min
w

wHRw s.t.wH ā(θ0) = 1 (4)

where ā(θ0) is presumed steering vector of the desired signal.
Appling Lagrange multiplier method results in the following solution,

w0 =
R−1ā(θ0)

āH(θ0)R−1ā(θ0)
(5)

The array mean output power p0 is
p0 =

1
āH(θ0)R−1ā(θ0)

(6)

The Capon beamformer has better resolution and much better interference rejection capability than the
standard beamformer, provided that the presumed array steering vector of the SOI match actual array steering
vector precisely. In practice, the exact steering vector of the SOI is unavailable or its measure/estimation is
imprecise, therefore, we only use the presumed ā(θ0) instead of the actual a(θ0) in the Capon beamformer, and
the mismatch between the exact steering vector and the presumed one may drastically degrade the performance
of the Capon beamformer.

The array output SINR can be written as,

SINR =
E[|wH

0 s0(t)|2]
wH

0 Ri+nw0
=

σ2
0 |wH

0 a(θ0)|2

wH
0

(
M−1∑
k=1

σ2
ka(θk)aH(θk) + Rn

)
w0

(7)

where σ2
0 = E(|s0(t)|). Inserting (5) into (7) yields,

SINR = σ2
0

∣∣āH(θ0)R−1
i+na(θ0)

∣∣2
āH(θ0)R−1

i+nā(θ0)
(8)

where a(θ0) is the actual steering vector, then (8) can be rewritten as:

SINR = σ2
0a

H(θ0)R−1
i+na(θ0)×

∣∣aH(θ0)R−1
i+nā(θ0)

∣∣2
(aH(θ0)R−1

i+na(θ0))(āH(θ0)R−1
i+nā(θ0))

= SINRm · cos2(a(θ0), ā(θ0);R−1
i+n) (9)
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where SINRm = σ2
0a

H(θ0)R−1
i+na(θ0) and cos2(·) is defined as,

cos2(a,b;Z) =

∣∣aHZb
∣∣2

(aHZa)(bHZb)
(10)

Clearly, 0 ≤ cos2(a,b;Z) ≤ 1. Therefore, array output SINR is reduced due to mismatch between the presumed
steering vector of the SOI and its true value.

In recent years, diagonal loading (DL) is a popular approach to improving the robustness of Capon beam-
former to the mismatch above. In DL methods, the data covariance R̂ is replaced by R̂+γI, where γ is positive
constant (see reference [4–6] for details). The DL method proposed in [4] is used in Section 4 for comparisons.
In the following section, a novel robust beamforming is developed to alleviate the effects of the steering vector
mismatch on the SINR performance of Capon beamformer.

3. Robust Capon Beamforming
The robust beamforming problem we will deal with in this paper can be briefly stated as follows: Extend the

Capon beamformer so as to improve array output SINR even only an imprecise knowledge of steering vector
a(θ0) is available. To simplify the notation, in what follows, we sometimes omit the argument θ of a(θ) and
ā(θ). We assume that the only knowledge we have about a(θ0) is that it belongs to the following uncertainty
[5]

[a(θ0)− ā]HC−1[a(θ0)− ā] ≤ 1 (11)

where C are given positive definite matrix.
As shown above, array performance loses will occur in the presence of mismatch between the presumed and

actual steering vectors of the SOI. If we estimate the actual steering vector of the SOI as more precise as we can,
then performance of the beamformer will be improved. The proposed robust Capon beamforming is based on
this idea. From subspace theory we know that the actual steering vector of desired signal is orthogonal to noise
subspace, our approach is based on the optimizing the projection of signal steering vector onto noise subspace.
The steering vector is normed as ||a||2 = aHa = N . To derive our robust Capon beamformer, we use following
constrained optimization

min
a

aHUnUH
n a

s.t.(a− ā)HC−1(a− ā) ≤ 1 (12)
||a||2 = N

where ā is known to us in advance, but has error (mismatch to the actual steering vector of the SOI). Un is the
noise subspace, which is obtained by the eigen-decomposition of R̂. To make up the noise subspace, we assume
that the number M , of plane waves impinging on the array is known a priori. We use this assumption only for
derivations and cancel it later. Note that we can improve the estimation accuracy of the actual steering vector
of the SOI from (12), and then obtain optimal weight w0 by Capon method.

Without loss of generality, we will consider solving (12) for the case in which C = εI, (ε is user parameter),
then, (12) becomes

min
a

aHUnUH
n a

s.t.||a− ā||2 ≤ ε (13)
||a||2 = N

We use the Lagrange multiplier methodology again, which is based on the function

L(a, λ, µ) = aHUnUH
n a + µ(2N − ε− āHa− aH ā) + λ(aHa−N) (14)

where µ ≥ 0, λ ≥ 0 are the Lagrange multiplier.
Hence, the unconstrained minimization of (14) for fixed µ, λ, is given by

δL(a, µ, λ)
δa

= 2UnUH
n a− 2µā + 2λa = 0 (15)

Clearly, the optimal solution of a is
â = µ(UnUH

n + λI)−1ā (16)
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Inserting â into (14), minimizing L(a, λ, µ) with respect to µ gives

δL(â, µ, λ)
δµ

= 2N − ε− āH â− âH ā = 0 (17)

Then, we obtain µ̂ =
2N − ε

2āH(UnUH
n + λI)−1ā

(18)

Inserting µ̂ into (14), minimizing Lagrange function with respect to λ yields

δL(â, µ̂, λ)
δλ

= âH â−N = 0 (19)

and the following equation can be derived,

āH(UnUH
n + λ̂I)−2ā

[āH(UnUH
n + λ̂I)−1ā]2

=
N

(N − ε

2
)2

(20)

Then, the solution of λ̂ can be obtained by some simple manipulations.
Substituting (18) into (16) yields

â = (N − ε

2
)

(UnUH
n + λ̂I)−1ā

āH(UnUH
n + λ̂I)−1ā

(21)

To summarize, the proposed robust Capon beamforming consists of following steps.
The algorithm:
Step 1: Calculate data covariance matrix, i.e.,

R̂ =
1
L

L∑
n=1

xnxH
n

Step 2: Compute the eigen-decomposition of R̂ and obtain the noise subspace Un.
Step 3: Solve λ̂ in (20).
Step 4: Use the λ̂ in Step 3 to calculate

â = (N − ε

2
)

(UnUH
n + λ̂I)−1ā

āH(UnUH
n + λ̂I)−1ā

(22)

Step 5: Compute optimal weight by Capon method, i.e.,

w0 = αR̂
−1

â, α =
1

âHR̂
−1

â
(23)

The proposed robust beamforming belongs to the class of diagonal loading, but the optimal amount of
diagonal loading level can be precisely calculated based on the uncertainty set of the steering vector. In the
Section 4 computer simulation results demonstrate excellent performance of the proposed algorithm.

In order to avoid eigen-decomposition and knowing the number of signals a priori, we use the POR approach
to obtain noise subspace. In [8], R is decomposed by EVD as

R = [Us Un]
[
Λs + σ2

vI 0
0 σ2

vI

] [
UH

s

UH
n

]
(24)

where Λs = diag{δ2
1 , . . . , δ2

M}, Us denotes the signal subspace. It approximates the noise subspace of R based
on R−m (m is a positive integer). Accordingly

σ2m
v R−m = UnUH

n + Usdiag
{( σ2

v

δ2
i + σ2

v

)m}
UH

s (25)

Clearly, (σ2
v/(δ2

i +σ2
v))m is less than 1 and converge to zero for sufficiently large m. Theoretically, limm→∞ σ2m

v R−m =
UnUH

n . As result, we modify the criterion (12) and consider the following POR cost function

min
a

aHR̂
−m

a

s.t.||a− ā||2 ≤ ε (26)
||a||2 = N
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By contrast, the (26) avoids estimating that dimension directly. Moreover, as m →∞, the proposed the POR
beamforming method in (26) converges to the subspace one in (12), and it can be shown that the performance
of the POR method for finite m will converge to the subspace one through computer simulation. We compared
our method with previous one in [6], where m = 1 in the section 4.

(a) (b)

Figure 1: Output SINR versus different SNR, pointing errors ∆ = 3◦, for (a) ε = 0.7, for (b) ε = 7.

(a) (b)

Figure 2: The Output SINR versus pointing errors for (a) ε = 0.7, for (b) ε = 7.

4. Computer Results
Our main motivation of simulation is to demonstrate the performance in the presence of some errors in the

steering vector. In all of the examples considered below, we assume a uniform linear array (ULA) with N = 20
sensors and half-wavelength spacing is used. The sources emitted mutual independent narrowband waveforms.
All the results are achieved via 50 Monte Carlo trials.

In the first example, we consider the effect of the pointing error of the SOI on array output SINR. The exact
direction of arrival of SOI is θ0, of which assumed value is θ0 +∆, i.e., ā(θ0) = a(θ0 +∆). We assume that a(θ0)
belongs to the uncertainty set

||a(θ0)− ā(θ0)||2 ≤ ε (27)



744 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

where ε is a user parameter. Let ε0 = ||a(θ0)− ā(θ0)||2. Then, choosing ε = ε0. However, since ∆ is unknown in
practice, the ε we choose may be greater or less than ε0. To show that the choice of ε is not a critical issue for
our algorithm, we will present simulation results with several values of ε in equation (21). In this example, the
directions of the SOI and an interference source are θ0 = 30◦, θ1 = −30◦, respectively. The assumed direction
of the SOI is θ0 + ∆ = 33◦, which results exact ε0 = 5.7750. The interference-to-noise ratio (INR) is 40 dB.

Figure 1 plots array output SINR versus the SNR of the SOI when the number of snapshots is set to be
L = 100. It is observed that the proposed algorithm (12) performs better than other two algorithms at all input
SNR. Also, since the error in steering vector of SOI is relatively large and cannot be negligible, the standard
Capon beamformer and its diagonal loading version suffer from severe performance degradation when SNR
increases. However, the proposed beamformer has SINR loss of 5 dB when SNR = 20dB. The proposed the
POR method for different m over various input SNRs is also illustrated in Figure 1. Obviously, the Output
SINR for m = 2 and m = 3 all converge to subspace approach (12), the counterpart for m = 1 [6] has the large
output SINR loss.

Figure 2 shows the array output SINR curve versus the pointing errors, in which SNR = 0dB, INR = 20dB,
L = 100. In this figure, the excellent performance achieved by the proposed algorithm is observed, which shows
the robustness to the pointing errors. It is noted that, similar to other robust approaches, our method will
worsen if there is/are strong interference spatially closed to the SOI. The reason is that for a given uncertainty
region (11), the solution of a in optimization (12) is converge to the strong interference source. Also, it can
be seen that the Output SINR of the proposed POR method increases as m increases, with m = 3 has same
performance with subspace one (12).

5. Conclusion
In this paper, we discuss the performance degradation due to the presence of steering vector uncertainty of

the SOI, such as, direction of arrival estimation error, finite number of snapshots, and array response error, etc.
A robust Capon beamformer is developed by utilizing the orthogonality between signal and noise subspace. A
more accurate estimate of the actual steering vector of the SOI is obtained via constrained optimization, by
which the optimal weight is computed according to Capon beamforming. We have shown that the proposed
algorithm belongs to the class of diagonal loading approaches, and the optimal amounts of diagonal loading can
be precisely calculated. In order to avoid eigen-decomposition and knowing the number of signals a priori, we
have proposed a POR-based robust beamforming scheme. It significantly outperforms the method proposed in
[6] and converge to the subspace one (12). The excellent performance of our algorithm has been demonstrated
via a number of computer simulations.

Acknowledgment
The work described in this paper was supported by National Science Fund under grant NFS60472097.

REFERENCES

1. Capon, J., “High resolution frequency-wavenumber spectrum analysis,” Proc. IEEE, Vol. 57, 1408–1418,
Aug. 1969.

2. Er, M. H. and A. Cantoni, “Derivative constraints for broad-band element space antenna array processor,”
IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-31, 1378–1393, Dec. 1983.

3. Buckley, K. M. and L. J. Griffiths, “An adaptive generalized sidelobe canceller with derivative constraints,”
IEEE Trans. Antennas Propagat., Vol. AP-34, 311–319, Mar. 1986.

4. Carlson, B. D., “Covariance matrix estimation errors and diagonal loading in adaptive arrays,” IEEE Trans.
Aerospace and Electronic System., Vol. 24, 397–401, Jul. 1988.

5. Stoica, P., Z.-S. Wang, and J. Li, “Robust capon beamforming,” IEEE Signal Processing Letters, Vol. 10,
No. 6, 172–175, June 2003.

6. Li, J., P. Stoica, and Z.-S. Wang, “Doubly constrained robust capon beamforming,” IEEE Trans. Signal
Processing, Vol. 52, No. 9, 2407–2423, Sep. 2004.

7. Shahbazpanahi, S., A. B. Gershman, Z.-Q. Luo, and K. M. Wong, “Robust adaptive beamforming for
general-rank signal models,” IEEE Trans. Signal Processing, Vol. 51, No. 9, 2257–2269, Sep. 2003.

8. Xu, Z., P. Liu, and X. Wang, “Blind multiuser detection: from moe to subspace methods,” IEEE Trans.
Signal Processing, Vol. 52, No. 2, 510–524, Feb. 2004.


