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Abstract—An analysis of the broadband beamspace adaptive array is provided. There are two conditions
imposed on the array. First, the individual beams should have a good frequency invariant property. Second,
they should be linearly independent. However, these two conditions are not independent and it is shown that
there is a trade-off between them. To improve the interference cancellation capability of the array, we may
need to sacrifice the frequency invariant property of the beams to some degree for more linearly independent
beams. A DFT-modulated design method is also proposed, where the beam directions are uniformly distributed
over the spatial domain and the linear independence of the beams is guaranteed inherently. Simulation results
verified our analysis and the proposed method.

1. Introduction
Adaptive beamforming has found numerous applications in various areas ranging from sonar and radar to

wireless communications [1]. For arrays to accomplish nulling over a wide bandwidth, tapped-delay lines (TDLs)

Figure 1: A signal impinges from an angle θ onto
a uniformly spaced broadband linear array with M
sensors, each followed by a J-tap filter.

are employed, resulting in an array with M sensors and
TDLs of length J , as shown in Fig. 1. To perform beam-
forming with high interference rejection and resolution,
we need to employ a large number of sensors and long
TDLs, which unavoidably increases the computational
complexity of its adaptive part and slows down the con-
vergence of the system. To reduce the computational
complexity of a broadband adaptive beamformer and in-
crease its convergence speed, Many methods have been
proposed, including the time-domain subband adaptive
beamformer [2, 3], a combination of subband decomposi-
tion in both the temporal and spatial domains [4], and
those based on frequency invariant beamforming tech-
niques [5, 6].

As the broadband counterpart of the narrowband
beamspace adaptive array, the beamspace broadband
adaptive array was proposed in [5], where several fre-
quency invariant beams (FIBs) are formed pointing to different directions by a fixed beamforming network with
two-dimensional (2-D) filters; thereafter the outputs of these beams are combined adaptively by a single weight
for each of them. Since both the number of beams and the number of selected beams are small, the total number
of adaptive weights is greatly reduced.

In this paper, we will first give an analysis of the broadband beamspace adaptive array to show a trade-off
between two conditions imposed explicitly or implicitly and its impact on the performance of the resultant
beamformer. It can be proved that the number of independent beams formed is the same as the length N of
the prototype filter for the fan filter design. Although we can design as many frequency invariant beams as
we want, only N of them are independent and at most we can only null out N − 1 interfering signals. As
the array’s interference cancellation ability is dependent on both the number of independent beams and the
frequency invariant property of those beams, we can sacrifice the frequency invariant property to some degree
to design more independent beams. As a result, the array’s interference cancellation property will be improved.
With the above analysis, we then propose a new design of the frequency invariant beams, where their beam
directions are uniformly distributed in the spatial domain and their independence is guaranteed inherently by
the special form of the prototype filters, which are derived from another prototype filter by the discrete Fourier
transform (DFT) modulation with appropriately imposed zeros.
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This paper is organised as follows. A brief review of the broadband beamspace adaptive array is provided
in Section. An analysis of the trade-off in its design is given in. The design based on the DFT modulation is
proposed in Section. Design examples and simulation results are given in Section, and conclusions drawn in
Section.

2. Broadband Beamspace Adaptive Array
In a narrowband beamspace adaptive array [7], a total of N beams are formed by a beamforming network,

where one is the main beam pointing to the direction of the signal of interest and the remaining N − 1 beams
are auxiliary beams pointing to the remaining directions. The output power levels of the auxiliary beams are
compared to a threshold and those higher than the threshold will be chosen in the following adaptation. In this
way the resultant partially adaptive array can maintain an acceptable performance with a lower computational
complexity. Extend this idea to the broadband case, we can also design N broadband beams pointing to
different directions to form a broadband beamspace adaptive array. To combine the outputs of the beams with
one adaptive weight for each of them, their response should be frequency invariant.

In [5], such a broadband beamspace adaptive array was proposed for an equally spaced linear array. With the
recent development in the design of frequency invariant beamformers for one-dimensional (1-D), two-dimensional
(2-D) and three-dimensional (3-D) arrays [8], we can easily extend the idea of a beamspace adaptive array to
the 2-D and 3-D cases. Here we will focus on the case of a linear array and first we give a brief review of the
proposed beamspace approach.

Suppose a signal with an angular frequency ω and an angle of arrival θ impinges on the uniformly spaced
linear array of Fig. 1, then its output in continuous form can be written as

y(t) = ejωt
M−1∑
m=0

J−1∑

k=0

wm,k · e−jmω∆τ · e−jkωTs (1)

with ∆τ =
d

c
sin θ, where Ts is the delay between adjacent samples in the TDL, d is the array spacing, and c is

the wave propagation speed. Then the array’s response can be written as

R̃(ω, θ) =
M−1∑
m=0

J−1∑

k=0

wm,k · e−jmω∆τ · e−jkωTs . (2)

With the normalised angular frequency Ω = ωTs, we obtain the response as a function of Ω and θ

R(Ω, θ) =
M−1∑
m=0

J−1∑

k=0

wm,k · e−jmµΩ sin θ · e−jkΩ with µ =
d

cTs
. (3)

With the substitution of Ω1 = Ω and Ω2 = µΩ sin θ in (3), we obtain a 2-D digital filter response

R(Ω1,Ω2) =
M−1∑
m=0

J−1∑

k=0

wm,k · e−jkΩ1 · e−jmΩ2 . (4)

We see that the spatio-temporal spectrum of the received signal lies on the line Ω2 = µΩ1 sin θ. Suppose the
desired frequency invariant response of the array is P (sin θ). By the substitution sin θ =

(
Ω2

µΩ1

)
, we can obtain

the response R(Ω1, Ω2) with nominal parameters Ω1 and Ω2. Sample the function R(Ω1, Ω2) at the (Ω1,Ω2)
plane and then apply an inverse discrete Fourier transform (DFT) to the resultant 2-D data, we will then find
the corresponding coefficients wm,k. To fit the spatial and temporal dimensions of the array, we may need to
truncate the result from the inverse DFT [5, 8].

For the desired response P (sin θ), it can comes from a 1-D digital filter H(ejΩ) by the substitution Ω = π sin θ.
If H(ejΩ) is a lowpass filter [5], then signals from the directions around θ = 0 will correspond to its passband,
and a beam is formed pointing to the direction θ = 0. If we want to steer this beam to the direction θ = θ0

with the same low pass filter H(ejΩ), we can vary it into the form H̃(ejπ sin θ) = H(ej(Ω−π sin θ0)) and consider
H̃(ejπ sin θ) as the new desired frequency invariant response.

As the sampling frequency is in general twice the highest frequency component of the signal and array
spacing is half the wavelength of the highest frequency component, we have d = 1

2 · c · (2Ts) = cTs and µ = 1.
Therefore, without loss of generality, we will only consider the case with µ = 1 in the design and simulations.
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Moreover, we also assume the signal of interest comes from the broadside, then the main beam will point
to the direction of θ = 0. For the auxiliary beams, their directions are decided in such a way that the main

Figure 2: A broadband beamspace adap-
tive array with P frequency invariant
beams (FIBs).

direction of a beam should ideally coincide with nulls (zero re-
sponses) of all other beams, as mentioned in the simulation part of
[5].

A single adaptive weight is applied to each of the auxiliary
beams by minimizing the variance of the error signal between the
main beam and the auxiliary beams. In the adaptation, some of
the auxiliary beam outputs are active and some others are simply
discarded if their output signals are below some prescribed level.
Fig. 2 shows the diagram of such a broadband beamspace adap-
tive array, where x[n] is the vector containing the received signals
x0[n], . . . , xM−1[n] and w1, . . . , wP−1 are the adaptive weights at-
tached to each of the beam outputs.

3. Analysis of the Broadband Beamspace Adaptive Array
For the beamspace array to work, the frequency invariant beamforming network needs to meet two conditions,

which are imposed explicitly or implicitly.
First, the beams formed should have a satisfactory frequency invariant property for the interested frequency

band, which is dependent on the required shape P (sin θ) of the beam and the temporal/spatial dimension of the
corresponding 2-D filter. The more complicated the shape, the more coecients we need in each of the frequency
invariant beams, i.e., a larger M and J .

From the discussion of the last section, the desired beam response can be derived from the corresponding
prototype filter H(ejΩ). Suppose the length of filter is N . As the shape is decided by the prototype filter, the
dimension M and J of the 2-D fan filter (frequency invariant beamformer) should be at least 3 times that of
the prototype filter to maintain the shape of the response of the prototype filter, that is, N ≤ min{M

3 , J
3 } [5].

Secondly, the beams formed should not be linearly dependent. Otherwise, some of the beam outputs will be
a linear combination of the others, which leads to a waste of resources and also reduces the number of effective
beams. As a result, we will not be able to null out the desired number of interfering signals. This second
condition is not mentioned explicitly in [5], but it is a necessary condition to fully exploit the potential of the
beamspace adaptive array. We will see later that the beam direction arrangement in [5] guarantees the linear
independence of the beams.

These two conditions are not independent and there is a close relationship between them. In the following,
we will show that the number of independent beams formed Nind cannot exceed the length N of the prototype
FIR filter. We prove this by contradiction.

Suppose we can have P > N independent beams formed by some prototype filters with a length N . These
beams have a response of Hp(ejπ sin θ), p = 0, 1, . . . , P − 1. Each of them is derived from the corresponding
prototype filter Hp(ejΩ), p = 0, 1, . . . , P − 1, with an impulse response of hp = [hp,0, hp,1, . . . , hp,N−1]T , p =
0, 1, . . . , P −1. These prototype filters Hp(ejΩ), p = 0, 1, . . . , P −1 can further be derived from the same lowpass
filter as discussed in the last section, or they can simply be some different filters.

Now consider the linear combination of the following form

0 = α0h0 + α1h1 + · · ·+ αP−1hP−1, (5)

where α0, · · · , αP−1 are scalars to be found for this equation to hold. Taking the transpose of both sides and
then multiplying the equation with the vector [1 ejπ sin θ . . . ej(N−1)π sin θ]T , we arrive at

0 = α0H0(ejπ sin θ) + α1H1(ejπ sin θ) + · · ·+ αP−1HP−1(ejπ sin θ), (6)

where Hp(ejπ sin θ), p = 0, 1, . . . , P − 1 is exactly the response of those independent beams. Since they are
independent, all the scalars α0, · · · , αP−1 must be zero for (6) to hold, and then for (5) to hold, which means
that hp, p = 0, 1, . . . , P − 1 are independent. However, as P is larger than the length of each vector hp, the
rank of the N × P matrix formed by H = [H0,H1, . . . ,HP−1] cannot be larger than N , that is, it is impossible
for all of the vectors hp to be independent. Thus, we reach a contradiction.

As the maximum rank of H is N , we can see from the proof that the maximum number of independent
beams formed will be equal to the length N of the prototype FIR filter. Clearly, although we can design as
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many frequency invariant beams as we want, only N of them are independent and at most we can only null out
N − 1 interfering signals. As the array’s interference cancellation ability is dependent on both the number of
independent beams and the frequency invariant property, there is trade-off between these two factors for a fixed
M and J . We may choose a prototype filter with N = min{M

3 , J
3 } for a good frequency invariant property,

but when the number of interferences increases and becomes larger than (min{M
3 , J

3 } − 1), the array will not
be able to null out the additional interferences. Therefore we may need to sacrifice the frequency invariant
property a little to increase N and design more independent beams. The loss in frequency invariant property
can be compensated by the gain in the increasing number of independent beams. As a result, the interference
cancellation ability of the array is improved. We will give some results to show this trade-off in our simulations.

The next question is, provided the length of the prototype filter N , how to design N independent frequency
invariant beams. We will propose a DFT-modulated method in the next section with the beam directions
uniformly distributed in the spatial space and their independence guaranteed inherently.

4. DFT-modulated Design of the Frequency Invariant Beamformers
Before we proceed further, we want to give a sufficient condition with which the P beams formed by P

general prototype filters hp, p = 0, 1, . . . , P − 1 are linearly independent. This condition is stated as follows.
• As long as for the p̂−th frequency response Hp̂(ejΩ), p̂ = 0, . . . , P−1, there exists a point Ω = Ωp̂,

where Hp̂(ejΩp̂) 6= 0 and all the remaining frequency responses Hp 6=p̂(ejΩp̂) = 0, the set of frequency
responses Hp(ejΩ), p = 0, 1, . . . , P − 1, and hence the set of beams formed by them will be linearly
independent.

The proof is given in the following. Consider the equation (5) again. Taking the transpose of both sides and
then multiplying the equation with the vector [1 ejΩ . . . ej(N−1)Ω]T , we arrive at

0 = α0H0(ejΩ) + α1H1(ejΩ) + · · ·+ αP−1HP−1(ejΩ), (7)

For p̂ = 0, put the value Ω = Ω0 into the above equation, we have

0 = α0H0(ejΩ0) + α1H1(ejΩ0) + · · ·+ αP−1HP−1(ejΩ0) = α0H0(ejΩ0) + 0 + · · ·+ 0. (8)

As H0(ejΩ0) 6= 0, we have α0 = 0. Similarly, we have αp = 0, p = 0, 1, . . . , P − 1. Therefore, for (7) to
hold, all the P scalars must be zero, that is, both the vectors hp and frequency responses Hp(ejΩ) are linearly
independent. The proof is complete.

In [5], the main direction of a beam was arranged to coincide with nulls (zero responses) of all other beams.
From the above proof, clearly, this arrangement guarantees the independence of the beams. However, in [5], the
authors were simply using the existing nulls of the prototype filter, so the direction of the auxiliary beams can not
be controlled by the designer and they can point to anywhere depending on the chosen lowpass prototype filter.
Here we propose a DFT-modulated method for the design of the independent frequency invariant beamformers,
where the beam directions are uniformly distributed in the spatial domain and their independence is guaranteed
inherently.

Assume the impulse response of a lowpass filter is h[n], n = 0, 1, . . . , N − 1. Based on h[n], we can obtain
the response hp of the p− th prototype filter for the p− th beam shape design by the following DFT modulation

hp,n = h[n]ej 2pnπ
P . (9)

In the frequency domain, this modulation shifts the response of original prototype filter h[n] along the frequency
axis by 2pπ

P . If the z-transform H(z) of h[n] can be expressed as

H(z) =
P−1∏
p=1

(1− ej 2pπ
P z−1), (10)

then after modulation, the main direction of the P resultant beams will coincide with the nulls of the other
beams, hence these beams will be independent. Note in this case, we have P = N , i.e., the number of independent
beams formed will be the length of the prototype filter.

For the main directions of these beams, we have

π sin θ =
{

2pπ
P for 2pπ

P < π
2pπ
P − 2π for 2pπ

P ≥ π
⇒ sin θ =

{
2p
P for 2p

P < 1
2p
P − 2 for 2p

P ≥ 1
, (11)
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for p = 0, 1, . . . , P − 1. They are uniformly distributed in the sin θ domain, where the first beam point to the
direction sinθ = 0 will be the main beam and the others will be the auxiliary beams. Fig. 3 gives an example

Figure 3: The desired beam shapes with P =
N = 5 formed by DFT modulations.

of the desired beam shapes with P = N = 5, where it can
be seen clearly that each of the five beam directions coincides
with the nulls of the other beams. Once we obtain the P desired
beam responses Hp(ejπ sin θ), we can follow the procedures given
in [8] to obtain the coefficients of the corresponding beamform-
ers.

One point to note is, in general, the Hp(ejπ sin θ) obtained
by DFT modulation is of complex value for different θ that is,

Hp(ejπ sin θ) = Ap(θ)ejBp(θ) (12)

where Ap(θ) and Bp(θ) are some real functions. The change of
both Ap(θ) and Bp(θ) with respect to different θ will lead to
a more complicated (Ω1,Ω2) pattern for the design, which will
require more coefficients in the temporal domain and therefore
larger dimension of the array. As Ap(θ) contains enough information about the shape of the beam response, we
can ignore the phase part Bp(θ) and our results show that in this way we can significantly improve the frequency
invariant property of the beams with the same array dimensions.

5. Simulations
To show the trade-off between the frequency invariant property and the number of linear independent

beams, the spatial and temporal dimensions of the frequency invariant beams are fixed as M = 14 and J = 16.
According to [5], ideally we should use a prototype filter of length b14/3c = 4 for the design of the 4 FIBs.
Fig. 4 shows the pattern of the main beam based on a 4-tap filter over the bandwidth [0.4π; 0.9π].

Figure 4: The magnitude response of the main beam over the bandwidth of [0.4π; 0.9π], based on a 4-tap and
a 6-tap prototype filter, respectively.

The signal of interest comes from broadside and with a signal to interference ratio (SIR) of -20 dB and signal
to noise ratio (SNR) of 20 dB. Five interfering signals come from the angles of 20◦, -25◦, 45◦, -50◦, and -80◦,
respectively. Both the interfering signals and the signal of interest have a bandwidth of [0.4π; 0.9π]. We used a
normalised LMS algorithm for adaptation. The learning curve with a stepsize of 0.01 is shown by the dashed
line in Fig. 5. As the number of interfering signals are 5, which is larger than 4− 1 = 3, the number of auxiliary
beams, the 4-beam adaptive array can not null out all of the interferences, although all of the beams have a
very good frequency invariant response over the interested bandwidth [0.4π; 0.9π]. As a result, the learning
curve only reaches a level of 15 dB. In order to improve its performance, we need to sacrifice the frequency
invariant property a little. So, we increased the length N of the prototype filter to 5, and 5 independent beams
were obtained. The learning curve of this new system with the same stepsize is shown by the dotted line in
Fig. 5. Compared to the 4-beam array, the ensemble mean square residual error has been reduced to about
8 dB. We can further to improve the performance of the system by designing 6 independent beams based on a
6-tap prototype filter (N = 6). The frequency invariant property of the main beam in this case is also shown in
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Figure 5: The learning curves for different number of independent beams.

Fig. 4, which is clearly not as good as that of N = 4. However, as there are more independent beams formed in
this array, a further improvement of more than 10 dB has been achieved, as shown by the solid line in Fig. 5.

6. Conclusions
An analysis of the broadband beamspace adaptive array has been provided and it is shown that in order to

improve the interference cancellation capability of the array, we may need to sacrifice the frequency invariant
property of the beams to some degree for more linearly independent beams. We also proposed a DFT-modulated
design of the frequency invariant beams employed in the broadband beamspace adaptive array, where the
beam directions are uniformly distributed over the spatial domain and the linear independence of the beams is
guaranteed inherently. Simulation results verified our analysis and the proposed method.
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