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Abstract—This paper studies nanostructured gratings made up by silver nanoparticles embedded in the dielec-
tric, which are capable of maintaining quasi-static modes. The special emphasis is devoted to following specified
types of gratings: row of periodical cylinders and square grating of spheres. The problem of a diffraction of a
plane electromagnetic wave on such structures has been solved within the dipolar-interaction approximation.
The frequency dependences of the refraction and absorption coefficients on the grating parameters have been
obtained, analyzed and compared.

1. Introduction
Recently, a significant success has been achieved in the areas related to creation of metamaterials based

on resonance metal elements, specifically, films with embedded metal nanoparticles [1–3] that are capable of
sustaining high-Q-factor quasi-static modes. At the resonance frequency, the scattering cross-section of such
particles exceeds their geometric sizes significantly, which yields a number of new collective optical properties
when they join up in nanostructures. The most preferable, in terms of practical applications (both from the
standpoint of their chemical stability and resonance characteristics), are the nanoparticles of silver and gold.
The coherent effects of light scattering on plane gratings formed by cylindrical and spherical nanometer silver
objects have been analyzed.

2. Diffraction on a Periodical Structures
This work studies the diffraction of a plane P-polarized wave with the form:

Hy = Hoexp(−iωt− ikocosϕz − ikosinϕx)
Ex = −Eocosϕexp(−iωt− ikocosϕz − ikosinϕx) (1)
Ez = −Eosinϕexp(−iωt− ikocosϕz − ikosinϕx)

that falls from the vacuum onto a plane grating formed by silver nanostructures (see Figure 1). Two simplest
and at the same time, evidently, basic configurations of the grating are considered: the first (unidimensional) is
a periodic row of cylinders with their axes lying in the plane z = 0 and oriented along the y-axis (see Figure 1a),
and the second (two-dimensional) is a periodic (both along x and y) square grating of spheres with their centres
in the plane z = 0 (see Figure 1b).

(a) (b)

Figure 1: Configurations of considering gratings.

Let us assume, for the sake of simplicity, that the dielectric permittivity of the substrate, which the grating
is mounted on, is close to unity, such that the environment is actually vacuum everywhere. Let the radii of the
cylinders and the spheres are small as compared with the length of the incident wave λ (a << λ). Then the field
scattered by these structural elements is the field of a linear dipole with its dipole momentum (per length unit)
Pcyl = αcylED for the cylinder, and the field of a point dipole with its dipole momentum Psph = αsphED for
the sphere, where ED is the effective field. When radiation losses are neglected, the polarizability coefficients
look as follows (see Figure 2):



552 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50
POLARIZABILITY COEFFICIENT FOR CYLINDERS

δ ω

α cy
l(ω

)/
a2

λ
res

=325nm

Reα
cyl

(ω)
Imα

cyl
(ω)

(a)

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

30

40

50
POLARIZABILITY COEFFICIENT FOR SPHERES

δ ω

α sp
h(ω

)/
a3

λ
res

=352nm

Reα
sph

(ω)
Imα

sph
(ω)

(b)

Figure 2: Polarizability coefficients of considering elements as a function of relative frequency shift δω = ω−ωres

ωres

(λres = 325nm for cylinders, λres = 352nm for spheres).

αcyl =
ε(ω)− 1
ε(ω) + 1

a2 αsph =
ε(ω)− 1
ε(ω) + 2

a3 (2)

Here ε(ω)− is the dielectric permittivity of the object. For silver, which is interest for us, it is described, in the
range λ ∼ 300− 500nm, with good accuracy as [4]:

ε(ω) = ε∞ − ω2
p

ω(ω − iγ)
(3)

where ε∞ = 4.7, ωp = 1.38 · 1016s−1, γ = 2.7 · 1013s−1.
The effective field is the sum of the incident field and the fields of all other dipoles at the location of some

segregated dipole in its absence. We propose that the following procedure should be used to find that field,
which is somewhat different from the traditional procedure and, in our opinion, seems to be convenient. Taking
into account that a polarized medium can be described by means of polarization currents J = ∂P

∂t = −iωP, let
us pass over from dipoles to currents. The density of such currents is represented as:

Jcyl(x) = −iωαcyl(ω)Ecyl
D δ(z)

+∞∑
n=−∞

δ(x− nd)

Jsph(x, y) = −iωαsph(ω)Esph
D δ(z)

+∞∑
n=−∞

+∞∑
m=−∞

δ(x− nd)δ(y −md) (4)

where δ(·) is the Dirac δ function.
Then, from the shown system of discrete currents, using the Poisson formula [5] we pass over to continuous

surface dummy currents of spatial harmonics:

Jcyl(x) = −iωαcyl(ω)Ecyl
D

δ(z)
d

+∞∑
n=−∞

exp(i
2π

d
nx)

Jsph(x, y) = −iωαsph(ω)Esph
D

δ(z)
d2

+∞∑
n=−∞

+∞∑
m=−∞

exp(i
2π

d
nx)exp(i

2π

d
my) (5)

Finding the field of the individual spatial harmonic is elementary for the tangential component of the current,
and somewhat more difficult for the normal one. Note that the normal component of the electric field is actually
equivalent to the tangential of the magnetic current. The effective field is further obtained by subtracting the
field of the segregated dipole situated, e. g., at the origin of coordinates. Representing the latter as an integral
over the same harmonics, we obtain finally the following self-consistent expressions:
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−∞
dκxdκyẼ(κx,κy) (6)

from which the effective field is extracted as a function of the incident field. It should be noted that the second
and third term in formula (6) have singularities at zero, which are mutually compensated. This should be taken
into account when performing numerical calculations.

Granted that the effective field is known, it is possible to solve the set diffraction problem.

3. Results and Discussion
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Figure 3: Reflection (firm line) and absorpion (dash line) power coefficients of considered gratings as a function
of relative frequency shift δω = ω−ωres

ωres
for various periods d of gratings (a/d = 0.2—blue line, a/d = 0.1 —green

line, a/d = 0.05—red line). The normal incidence case (ϕ = 0).
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Figure 4: Reflection power coefficients of considered gratings as a function of relative frequency shift δω = ω−ωres

ωres

for various incidence angles (ϕ = 0◦—red line, ϕ = 30◦—green line, ϕ = 50◦—blue line, ϕ = 70◦—black line).
Relation a/d = 0.2 is fixed.
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Figure 5: Absorption power coefficients of considered gratings as a function of relative frequency shift δω =
ω−ωres

ωres
for various incidence angles (ϕ = 0◦—red line, ϕ = 30◦—green line, ϕ = 50◦—blue line, ϕ = 70◦—black

line). Relation a/d = 0.2 is fixed.

Further the results of the numerical calculations based on the formulas (6) are presented and discussed.
Reflection and absorpion power coefficients as a function of relative frequency shift δω = ω−ωres

ωres
for various

grating parameters are shown in Figures 3, 4, 5. All results are given for the fixed parameter kresa = ωres

c a =
0.08. Thus, the radius of cylinders a is equal 4.1nm and the radius of spheres a is equal 4.5nm. The left-hand
parts of figures respond a case of the grating from cylinders, and right parts—to a case of the grating from
spheres. Comparison allows to present common features and distinctivenesses.

Figure 3 convincingly shows effect of coherent interaction of separate elements at their converging. The peak
value of reflection coefficients for the grating from spheres is noticeably less than for the grating from cylinders.
It is stipulated by essential difference in filling factors (fcyl/fsph = 4a/3d). Different shift of frequencies, at
which the maxima of reflection coefficient for considered gratings is attained, is determined, apparently, various
interactions of linear dipoles and point dipoles.

In case of oblique incidence (see Figure 4) with increase of an incidence angle, one more peak occurs and
gradually grows. It is stipulated by coherent interaction dipoles oriented along the z-axis.

4. Conclusion
A two-dimensional problem of plane electromagnetic wave diffraction on a gratings consisting of resonance

elements is solved in dipole-interaction approximation. A novel method of obtaining effective field expression is
proposed. Reflection and absorption coefficients are found for various compositions of gratings parameters.
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