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Abstract—Recent fundamental results [1] in the theory of linear, multi-port networks enable cost-effective,
higher-reliability designs for electronically-steered phased arrays. The referenced paper documents and proves
that, by including a properly designed beam-forming network, it becomes possible to feed an array and steer its
beam, using a much reduced number of expensive and critical phase- and amplitude-controlled sources, while at
the same time completely eliminating the adverse effects of element coupling. Those new results are based on
a generalization of the classical concepts of scalar image impedance, and of scalar image-transfer function for
two-port networks, to the new concepts of multidimensional image-impedance matrix, and of multidimensional
image-transfer function matrix for linear multi-port networks.

1. The Price of Performance
Electronically-steered phased arrays provide unsurpassed agility and high angular resolution in beam-pointing,

and the capability of adaptive, multifunction performance. Such highly desirable features are however only at-
tained at the price of high cost, extreme complexity, and limited reliability. Indeed, electronically-steered
phased arrays are almost always designed as active-aperture system, that include a large number of semi-
conductor devices and beamsteering control-elements, embedded in the physical array structure, and closely
connected with all the array radiating elements. The phased arrays used in radar systems use transmit/receive
modules (T/R), essentially tiny radar, each nested behind a radiating element, in a half-wavelength square
section of the total array aperture. Because of the well-known low power-efficiency of semiconductors, a large
heat-flux is developed locally, thus generating a complex cooling problem. Finally, notwithstanding technology
advances the semiconductor devices and beam-steering control-elements still are the most expensive components
of electronically-steered phased array, and cost-effective designs would only be attained by reducing their total
number. Those cost and reliability advantages are however only attainable if the structure of the beam-forming
network used establishes a pattern of synergistic connectivity, where each controlled source simultaneously feeds
all the array elements, and each array element is simultaneously fed by all the sources (Figures 1 and 2).

Figure 1: A clustered phased array providing syner-
gistic connectivity.

Figure 2: The aperture field is a superposition of
components.

2. Non-symmetric Beam-forming Network
Such cost and complexity reductions could only be feasible by including a non-symmetric, multiport beam-

forming network between the reduced number of active devices, and the much larger number of array radiating
elements. Such beam-forming network would necessarily be non-symmetric, because of including an n-port
interface on the side of the active devices, and an N -port interface on the side of the array radiating elements,
with n < N (Figures 3 and 4). The use of a reduced number of beam-steering control-elements appears possible,
by considering that current active apertures have the capability of creating a very large number of completely
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superfluous aperture distributions, that do not generate any practical radiation pattern. Also, the angular
resolution of beam-steering could be without penalty reduced, by steering the beam in increments being only a
fraction of the –3 dB beam-width.

Figure 3: Unconditional, bilateral image-impedance
match: forward-wave, n-phase excitation, with arbi-
trary wave amplitudes and phases.

Figure 4: Unconditional, bilateral image-impedance
match: backward-wave, N -phase excitation, with ar-
bitrary wave amplitudes and phases.

3. Recent Theoretical Results
The referenced, recent fundamental results [1] in the theory of multi-port networks have been attained by

introducing a generalization of the classical concept of scalar image-impedance of two-port networks, to that
of image-impedance matrices for multiport networks. Similarly, the classical concept of scalar image-transfer
function of two-port networks, has been generalized to that of image-transfer function matrices for multiport
networks. These generalizations have made possible the design of non-symmetric beam-forming networks, that
are simultaneously impedance-matched to the external environment at both interfaces, while having prescribed
two-way transfer functions between two interfaces with different number of ports (n < N ).

4. Image Impedance Matrices
The first fundamental new result expresses the n×n image-impedance matrix Z I1 for the n-port interface-1,

and the N ×N image-impedance matrix Z I2 for the N -port interface-2, as functions of the four different-size
blocks Z i of the (n + N )× (n + N ) impedance matrix of a non-symmetric, multi-port network:

ZI1 = (In − Z2 · Z−1
4 · Z3 · Z−1

1 )1/2 · Z1 = (In − Pn)1/2 · Z1 (1)

ZI2 = (IN − Z3 · Z−1
1 · Z2 · Z−1

4 )1/2 · Z4 = (IN − PN )1/2 · Z4 (2)

where the n × n matrix product Pn, and the N ×N matrix product PN are given by:

Pn = Mn ·MN = Z2 · Z−1
4 · Z3 · Z−1

1 = MPn · ΛPn ·M−1
Pn (3)

PN = MN ·Mn = Z3 · Z−1
1 · Z2 · Z−1

4 = MPN · ΛPN ·M−1
PN (4)

The partial matrix-products M n and M N in the expressions Eqs. (3) and (4) are defined as:

Mn = Z2 · Z−1
4 (5)

MN = Z3 · Z−1
1 (6)

and the matrix products Pn, and PN are mutually related by the expression:

PN · (MN ·MPn) = MN · (Mn ·MN ) ·MPn = MN · Pn ·MPn = (MN ·MPn) · ΛPn (7)

By connecting external load-networks with internal impedance matrices ZL1 = Z I1 and ZL2 = Z I2 to
the two interfaces, the two image-impedance matrices will transform to each other through the non-symmetric
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network:

ZI1 = Z1 − Z2 · (Z4 + ZI2)−1 · Z3 (8)
ZI2 = Z4 − Z3 · (Z1 + ZI1)−1 · Z2 (9)

5. The Block-traceless Scattering Matrix
Because of the bilateral impedance match so attained, the (n + N ) × (n + N ) scattering matrix S of the

nonsymmetric network becomes block-traceless, with only the two rectangular blocks S2 and S3 being non-zero:

S =
∣∣∣∣
0 S2

S3 0

∣∣∣∣ (10)

S2 = Z2 · Z−1
4 ·

[
IN + (IN − Z3 · Z−1

1 · Z2 · Z−1
4 )1/2

]−1

(11)

S3 = Z3 · Z−1
1 ·

[
In + (In − Z2 · Z−1

4 · Z3 · Z−1
1 )1/2

]−1

(12)

6. Modal and Spectral Analysis
Two other fundamental new results express the modal matrix M S , and the spectral matrix ΛS of the

autonormalized (normalized to the matrices Z I1 and Z I2), block-traceless (n +N )× (n +N ) scattering matrix
S as:

MS =
∣∣∣∣
M1 M2

M3 M4

∣∣∣∣ (13)

ΛS =
∣∣∣∣
Λ1 0
0 Λ4

∣∣∣∣ (14)

The modal matrix M S has two square diagonal blocks M 1 of size n × n , and M 4 of size N ×N , and two
rectangular blocks M 2 of size n ×N , and M 3 of size N × n , while the blocks Λ1 and Λ2 are n × n , and
N ×N :

M1 = MPn (15)
M2 = −P−1/2

n · Z2 · Z−1
4 ·MPN (16)

M3 = Z3 · Z−1
1 ·MPn · Λ−1/2

Pn (17)
M4 = MPN (18)

Λ1 = Λ1/2
Pn ·

[
In + (In − ΛPn)1/2

]−1

= Diag(e−γn) (19)

Λ4 = −Λ1/2
PN ·

[
IN + (IN − ΛPN )1/2

]−1

= Diag(e−γN ) (20)

Most remarkably, the block Λ4 includes N − n identically-zero eigenvalues, that correspond to the N − n
identically-zero eigenvalues of the spectral matrix ΛPN of the matrix PN , while the remaining n eigenvalues
are equal to those in block Λ1, save for a sign change. The 2n non-zero eigenvalues in the spectral matrix ΛS ,
and the corresponding eigenvectors, identify the two sets of n forward, and n backward, natural transmission
modes of any given non-symmetric beam-forming network, while the N − n eigenvectors, that correspond to
the zero-eigenvalues in block Λ4, span the null-space of the n ×N block S2, and identify the natural cut-off
modes of the network. These are the N − n voltage-wave aj vectors of the N -port interface-2, for which the
received bi = S2 · aj vectors of the n-port interface-1 are all identically zero.

7. The Required Impedance Matrix
The final referenced fundamental result expresses the two square blocks Z 1 of size n×n , Z 4 of size N ×N ,

and the two rectangular blocks Z 2 of size n × N , and Z 3 of size N × n , as functions of the two required
imageimpedance matrices Z I1 and Z I2, and of the two required rectangular image-transfer function matrices
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S2 and S3:

Z1 = (In − S2 · S3)−1 · (In + S2 · S3) · ZI1 (21)
Z2 = 2(In − S2 · S3)−1 · S2 · ZI2 (22)
Z3 = 2(IN − S3 · S2)−1 · S3 · ZI1 (23)
Z4 = (IN − S3 · S2)−1 · (IN + S3 · S2) · ZI2 (24)
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