Synthesis of Aperture-Field Distributions for of High-Gain Phased Arrays

R. A. Speciale

Research and Development Inc., USA

Recent analytical and numerical studies of rather unusual aperture-field distributions for high-gain phased arrays have generated some interesting new results, while leading to a deeper insight, and understanding of the underlying radiation process. The planar, circular-aperture distributions analyzed were synthesized as weighted linear combinations of **TE** and **TM** cylindrical wave-modes with equal azimuth symmetry order *m*. The **TE** and TM cylindrical modes used were mathematically defined as linear combinations of the W. W. Hansen's M and \mathbf{N} basis vector-fields, using only Bessel functions of the first kind to express the radial dependence of the five TE, and of the five TM field-components. The closedform expression of the radial component S_R^* of the Complex Poynting Vector shows that the radial energyflow density of the combined TE and TM aperture-fields is identically zero, everywhere in the half-space above the $\mathbf{z} = 0$ plane of the aperture, for any values of the radial and azimuth coordinates r and φ , and of the symmetry order m. Further, the imaginary part of the vector product S_{R}^{*} , that represents *reactive power flow* in the radial direction, also becomes identically zero, when the two mode-types are linearly combined with equal weights. At the same time, however, the axial component S_z^* of the Complex Poynting Vector of the combined **TE** and **TM** fields is non-zero, and is oriented along the positive z-axis, thus generating a broadside high-gain beam. It appears then that the linear combination of \mathbf{TE} and \mathbf{TM} cylindrical wave-modes, with equal order m, results in the total cancellation of the radial, active-energy flow, everywhere in the $\mathbf{z} \geq 0$ radiation half-space, at all radial, azimuth, and axial positions. The results of preliminary computations, with m = 1, show that the electric-field components $\mathbf{E}_{\mathbf{r}}, \mathbf{E}_{\omega}$ and $\mathbf{E}_{\mathbf{z}}$ have a decaying oscillatory radial dependence, while the axial component S_z^* of the Complex Poynting Vector is sharply peaked at the center of the circular aperture. The azimuth component S_{φ}^{*} of the Complex Poynting Vector is zero a the center of the aperture, and has a mostly non-decaying oscillatory radial dependence. The axial ratio $\rho = \mathbf{E}_{\varphi}/\mathbf{E}_{\mathbf{r}}$ is exactly equal to 1 on axis (at the center of the aperture), thus representing circular polarization, and goes through poles and zeros with increasing radius. The radiation pattern in the near-, Frenel, and far-field is being determined by using the Green's function, and by combining all the components of the E and H fields. Present analysis efforts aim at determining an optimum aperture truncation radius, and an optimum radial *filtering (or windowing)*. As no rigorous procedure is as yet known for determining the optimum combination of truncation radius and radial filter shape, a rather heuristic approach is being used. It has been determined that the new, unusual aperture-distribution may be represented by a continuous spectrum of planar waves, where all the spectrum components have propagation vectors K oriented at a constant angle γ relative to the broadside z-axis, and phases that are linearly dependent on the azimuth angle φ . As a consequence, the resulting total phase-front appears to have the shape of a circular helical-surface, similar to a corkscrew. It has been concluded that the radiated beam, generated by that distribution, appears to be the microwave equivalent of an optical vortex.

REFERENCES

1. Stratton, J. A., Electromagnetic Theory, Chapter VII, 392.