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Abstract—In this paper a hybrid numerical approach for the simulation of micro electro mechanical systems
(MEMS) is presented. A simulation model that takes into account the mechanical and the electrical effects
is developed. The model is applied to an electrostatic force microscope (EFM) and simulation results are
presented.

1. Introduction
Although micro electro mechanical systems (MEMS) already exist for many applications, their calculation

is still difficult since in order to obtain accurate results, ofter times multi scale aspects have to be included.
Furthermore the coupled mechanical and electrical behavior has to be taken into account. In our work this is
achieved by dividing the model into a mechanical and an electrical part. The interaction between them is shown
in Fig. 1 and can conveniently be realized by using a staggered simulation approach. The electric forces are
calculated by the electrical part and passed to the mechanical part which uses them as input for the calculation
of the mechanical deflection. In order to apply this approach to a two dimensional model of an electrostatic
force microscope (EFM) (Fig. 2) both parts have to be defined. Therefore the components and the principle
of an EFM will be explained in the following. An EFM is used to scan surfaces holding an electric potential
or a charge distribution [1–3]. During the scanning process the tip at the end of the cantilever is run over the
sample. The forces acting on the cantilever and the tip are determined by the electrostatic field and calculated
by the electrostatic part of the model. The mechanical behavior of the cantilever is modelled using a beam
model while for the region near the tip the finite element method (FEM) is used. A more detailed description
of the electrical part will be given in the following.

Figure 1: Mechanical and electrical part.

2. Formulation of the Problem
The energy-related functional in the electrostatic calculation domain Ω (Fig. 2) can be written as

W =
∫

Ω

(∇u)2dΩ u ∈ H1
D(Ω) : {u ∈ H1|u|ΓD

= u0} (1)

where u(a1, a2, . . . , am, x, y) is an approximation of the potential u(x, y). It is well known that the solution of

∂W

∂ai
= 2

∫

Ω

∇u
∂∇u

∂ai
dΩ = 0 (2)

yields an approximative solution for the Laplace equation in Ω. In order to solve (2) numerically we shall take a
closer look at the requirements in the different parts of the calculation domain Ω. Since most of the interaction
between probe and sample happens at the bottom of the tip, accurate calculation results are important in this
region. Therefore a numerical method which is able to deal with the high field values near the tip is required.
For this reason the method of fundamental solutions (MFS) is applied in region ΩM (Fig. 3). At a larger distance
from the tip (region ΩF ) lower field values are expected, but possible nonlinearities and charge distributions
in the sample require a versatile numerical method such as the finite element method (FEM). Because of the
large difference in size of tip and cantilever length, FEM cannot conveniently be applied in the whole rest of the
calculation domain. Therefore the boundary element method (BEM) that only requires a mesh on the boundary
is used in region ΩB .
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Figure 2: Electrostatic force microscope and calcu-
lation domain.

Figure 3: Divided calculation domain.

The solutions in the circular region ΩM of radius R can be expanded into

u(ρ, φ) = V0 +
m∑

i=1

ci

( ρ

R

) iπ
β

sin(
iπφ

β
), (ρ, φ) ∈ ΩM (3)

where V0 is the electric potential and β is the outer opening angle of the tip [4]. For the choice of R and the
position and the number of coupling points, the overlapping area of ΩM and ΩF must be small. Furthermore it
must be considered that (3) is a good approximation of the potential only near the tip.

In region ΩF linear FEM

u(x, y) =
n∑

j=1

ujψj(x, y), (x, y) ∈ ΩF (4)

is applied [5]. The solutions of both regions [6] are coupled by

uc = V0 +
m∑

i=1

ci sin(
iπφc

β
). (5)

Replacing the coupling node potentials in (4) by (5) and using the resulting potential functions in (2) leads
to (

M BT

B F

)(
c

uF

)
=

(
bM

bF

)
(6)

where M is the matrix resulting from the MFS that is defined by

Mij = 2
∑

k∈nc

∑
m∈nc

sin
(

iπ

β
φk

)
sin

(
jπ

β
φm

) ∫

ΩF

∇(ψk)∇(ψm)dΩ +
{

iπ, i = j
0, otherwise, (7)

Fij = 2
∫

ΩF

∇ψi∇ψjdΩ (8)

is the FEM stiffness matrix,
Bij = 2

∑

k∈nc

sin
(

jπ

β

) ∫

ΩF

∇ψi∇ψkdΩ (9)

is the FEM-MFS coupling matrix,

bMi = −2V0

∑

k∈nc

∑
m∈nc

sin
(

iπ

β

) ∫

ΩF

∇ψk∇ψmdΩ (10)

is the MFS right hand side and

bFi = −2V0

∑

k∈nc

∫

ΩF

∇ψi∇ψkdΩF − 2
∑

j∈nD

φj

∫

ΩF

∇ψi∇ψjdΩ (11)

is the right hand side resulting from the variation of the FEM potentials. Here nc stands for the coupling nodes
and nD are the Dirichlet boundary conditions. The matrix F can be written as

F =
(

FNN FT
CN

FCN FCC

)
(12)
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where FNN includes only the interaction between the nodes inside the FEM domain, FCC stands for the
interaction inside the coupling interface while the interaction of coupling interface and FEM domain is described
by FCN .

On the FEM-BEM transmission interface ΓT = ΓB ∩ ΓF : uB = uF and ∂uB

∂n + ∂uF

∂n = 0. Using the Gauss
theorem on ΩFM = ΩF ∪ ΩM one obtains [5]

∫

ΓF

∂uFM

∂n
v dΓ =

∫

ΩF M

div(∇uFM · v) dΩ =
∫

ΩF M

∆uFM · v dΩ +
∫

ΩF M

∇uFM · ∇v dΩ (13)

i. e., for all v ∈ H1
D,0(ΩFM ) := {v ∈ H1(ΩFM ) : v|ΓD∩ΓF = 0}

a(uFM , v) :=
∫

ΩF M

∇uFM · ∇v dΩ =
∫

ΩF M

f · v dΩ +
∫

ΓF

∂uFM

∂n
v dΓ =: (f, v)ΩF M

+ 〈∂uFM

∂n
, v〉ΓF

(14)

where uFM includes uF and c. The representation formula of the Laplace equation for the solution of uB inside
ΩB

uB(x) =
∫

ΓB

{ ∂

∂n(y)
G(x, y)uB(y)−G(x, y)

∂uB

∂n(y)
}dΓ, x ∈ ΩB (15)

with the fundamental solution of the Laplacian given by

G(x, y) = − 1
2π

log |x− y|. (16)

If one computes the Cauchy data [7] uB and ∂uB/∂n of uB(x), one will get two boundary integral equations
on ∂ΩB ,

V
∂uB

∂n
= (I + K)uB (17)

WuB = (I −K ′)
∂uB

∂n
(18)

where the boundary integral operators are defined as

V ψ(x) := 2
∫

ΓB

G(x, y)ψ(y)dΓy, Kψ(x) := 2
∫

ΓB

∂

∂ny
G(x, y)ψ(y)dΓy, x ∈ ΓB (19)

K ′ψ(x) := 2
∂

∂nx

∫

ΓB

G(x, y)ψ(y)dΓy, Wψ(x) := −2
∂

∂nx

∫

ΓB

∂

∂ny
G(x, y)ψ(y)dΓy, x ∈ ΓB (20)

where the single layer potential V and the hypersingular operator W are symmetric and the double layer
potential K has the dual K ′ [8].

Using (18) one can eliminate ∂uB/∂n with (17). This leads to

WuB = (I −K ′)
∂uB

∂n
= 2

∂uB

∂n
− (I + K ′)

∂uB

∂n
= 2

∂uB

∂n
− (I + K ′)V −1(I + K)uB (21)

with the Poincaré-Steklov-Operator S applied to uB

SuB := (W + (I + K ′)V −1(I + K))uB = 2
∂uB

∂n
(22)

which can be used for symmetric coupling. In variational form for all
w ∈ H̃1/2 := {w ∈ H1/2(ΓB) : w|ΓD∩ΓB

= 0} holds

〈SuB , w〉ΓB
= 2〈∂uB

∂n
,w〉ΓB

. (23)

With (14) and (23) one can obtain the variational formulation

2a(uFM , v) + 〈SuB , v〉ΓT
= 2(f, v)ΩF M

+ 2〈t0, v〉ΓN∩ΓF
(24)

〈SuB , w〉ΓB∩ΓN
= 2〈t0, w〉 (25)

for all (w, v) ∈ H̃1/2 × H1
D,0(ΩF ) with f being the charge distribution inside ΩF and t0 are the Neumann

boundary conditions.
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The Poincaré-Steklov-Operator S cannot discretize directly because the inverse single layer potential V
cannot be descritized in the usual way. For this reason without Poincaré-Steklov-Operator the problem can
be rewritten as saddle point formulation. The saddle point formulation of the problem for all (w, v, ψ) ∈
H̃1/2 ×H1

D,0(ΩFM )× H̃−1/2(ΓB)

2a(uFM , v) + 〈WuB , v〉ΓT
+ 〈(I + K ′)ϕ, v〉ΓT

= 2(f, v)ΩF M
+ 2〈t0, v〉ΓN∩ΓF

(26)

〈WuB , w〉ΓB∩ΓN
+ 〈(I + K ′)ϕ,w〉ΓB∩ΓN

= 2〈t0, w〉ΓB∩ΓN
(27)

〈(I + K)uB , ψ〉ΓB
− 〈V ϕ, ψ〉ΓB

= 0 (28)

If the bases are introduced as span{v1, . . . . . . , vF } = XF , span{w1, . . . . . . , wF } = XB and span{ψ1, . . . . . . , ψF } =
YB , the basis functions of XF and XB are supposed to be ordered such that

span{v1, . . . . . . , vF } = XF ∩H1
D,0(ΩF )

span{w1, . . . . . . , wB} = XB ∩H1/2(ΓB).

If the coefficients of uFM and uB are denoted by u and the coefficients of ϕ are denoted by ϕ again then
this system is equivalent to the original differential equation that can be used for descritization. This system
corresponds to a matrix formulation which can be written as




M BT 0 0 0
B FNN FNC 0 0
0 FCN FCC + WCC WCN (KT + I)C

0 0 WNC WNN (KT + I)N

0 0 (K + I)C (K + I)N −V







um

uF

uT

uB

ϕ




=




bm

bF

bΓ

bB

bϕ




(29)

where the subscript C means contribution from the coupling nodes and N means contribution from the noncou-
pling nodes. Finally the blocks W , V , K + I, and KT + I provide the coupling between the two ansatz spaces
XF and XB . Here um are the MFS coefficients, uF and uB are the nodal potentials inside the FE domain and
on the boundary of the BE domain respectively, uT are the nodal potentials on the FE-BE coupling interface
and ϕ are the normal components of the electric field distribution on the boundary of the BE domain. The
vector b includes the corresponding boundary conditions. As the matrix in (29) is not positive definite, a specific
algorithm such as the MINRES algorithm is required for the solution.

Since the scanning process of an EFM is dynamic, the FEM mesh in ΩF has to be changed during the
calculation which is achieved by using the arbitrary Lagrangian Eulerian method (ALE) [9]. The mesh is
modeled as a massless elastic which is deformed by the changing position of the cantilever and the sample
(Fig. 4).

Figure 4: ALE mesh deformation.

The result of a typical simulation can be seen in Fig. 6 and Fig. 7. As expected a high value of the electric
field occurs at the tip. Since the coupling condition of MFS and FEM only includes the potential values (5),
the electric field is not continuous on the interface. This indicates that FEM simulation results near the tip can
be improved by using the coupled FEM-MFS approach presented here. A smoother transition of the electric
field can be obtained by using a combination of FEM and MFS ansatz functions in region ΩM . Fig. 5 shows
the simulated potential between tip and sample obtained by using FEM and the hybrid simulation approach
(R = 1, 2).
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Figure 5: Comparison FEM/Hybrid Simulation.

Figure 6: Simulated electrostatic potential. Figure 7: Simulated electrostatic field.

3. Conclusion
A hybrid numerical approach for the simulation of micro electro mechanical systems (MEMS) has been

presented and applied to an electrostatic force microscope. In order to fulfill the special requirements in the
different simulation regions an approach that combines FEM BEM and MFS was used to calculate the electro-
static field. ALE was applied to fit the FEM mesh to the changing boundaries. The results show the expected
field distribution.
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