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Abstract—We present results from an effort to couple the equations of electromagnetic diffusion with the
equations of arbitrary Lagrangian-Eulerian (ALE) hydrodynamics. The electromagnetic diffusion equations
are discretized using a novel mixed finite element method coupled with a generalized Crank-Nicholson time
differencing scheme. At each discrete time step, electromagnetic force and heat terms are calculated and
coupled to the hydrodynamic equations in an operator split approach. We present preliminary results from a
fully coupled electromechanical simulation as well as results concerning advection techniques for electromagnetic
quantities.

1. Introduction
We are interested in the simulation of electromechanical devices and magnetohydrodynamic events in three

dimensions. Our primary goal is a numerical method that solves, in a self-consistent manner, the equations of
electromagnetics (primarily statics and diffusion), heat transfer (primarily conduction), and non-linear mechan-
ics (elastic-plastic deformation, and contact with friction). In this paper, we focus on the numerical discretization
of electromagnetic diffusion in an arbitrary Lagrangian-Eulerian (ALE) fashion for the purposes of computing
~J× ~B forces for mechanical (or hydrodynamic) calculations and ~J · ~E Joule heating terms for thermal calculations.

The equations of electromagnetic diffusion can be derived from the full wave Maxwell equations by mak-
ing the good conductor approximation (i. e., ignoring displacement current), which is standard practice in
magnetohydro- dynamic (MHD) formulations. For conducting materials moving with a velocity ~v with respect
to a fixed Eulerian (or laboratory) frame, we can derive the so called dynamo equation (also known as the
hydromagnetic equation) in terms of magnetic flux density

∂ ~B

∂t
= −~∇× (

1
σ

~∇× 1
µ

~B) + ~∇× (~v × ~B) (1)

In the Eulerian description the velocity ~v is a function of time t and position ~x. In the Lagrangian (or
material) description (which we will designate with a “prime” symbol), the flow is described by following the
position ~x(~x′, t) of the material point that started at position ~x′ at t = 0. In functional form, we have

~x′ = ~x′(~x, t); ~x = ~x(~x′, t)

To convert between the two representations, we define the Jacobian matrix as

Ji,j =
∂x′j
∂xi

(2)

As shown in [1], the following quantities are invariant with respect to the Lagrangian-Eulerian representations

Lagrangian Eulerian
~E′ · d~x′ = ( ~E + ~v × ~B) · d~x

~B′ · d~a′ = ~B · d~a (3)

It is well known that differential arc length and surface area elements transform according to

d~x′ = JT d~x (4)
d~a′ = |J |J−1d~a (5)

As a consequence, the electric field intensities and magnetic flux densities must transform inversely to maintain
the invariance property of (3)
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~E′ = J−1( ~E + ~v × ~B) (6)

~B′ =
1
|J |J

T ~B (7)

The dynamo equation in the Lagrangian frame is therefore

d ~B′

dt
= −~∇′ × (

1
σ

~∇′ × 1
µ

~B′) (8)

In a typical ALE hydrodynamic calculation, an operator split method is employed where all calculations are
performed on a Lagrangian mesh (i. e., a mesh that moves with the materials). When the Lagrange motion of
the mesh causes significant mesh distortion, that distortion is corrected with an equipotential relaxation of the
mesh, followed by a 2nd order monotonic remap of mesh quantities. This remap is equivalent to an advection
of material through the mesh. In our proposed ALE formulation of MHD, we will employ an operator-split
method with three distinct steps:

• Electromagnetic Diffusion–Solve the dynamo equation in the Lagrangian frame at one discrete time step
for fixed materials.

• Lagrangian Motion–Move mesh nodes according to ~J ′ × ~B′ forces assuming a d ~B′
dt = 0 “frozen flux”

condition.

• Eulerian Advection–Only required if mesh is relaxed, advect (or transport) magnetic (vector potential)
flux quantities to new mesh.

Note that the second step (effectively “dragging” the electromagnetic quantities along with the mesh during
Lagrangian motion) will only work if our discretization of the electromagnetic quantities satisfies the invariance
relation of (3) (see also [2]). In the Eulerian advection step of the calculation, the computed electromagnetic
degrees of freedom must be “remapped” or “advected” in a way which preserves a discrete divergence-free
property of the magnetic flux density with minimal magnetic energy loss.

2. Numerical Formulation
The divergence-free (or solenoidal) nature of the magnetic flux density, ~∇′ · ~B′ = 0, implies that ~B′ = ~∇′× ~A′

where ~A′ is a magnetic vector potential. This in turn implies that the electric field in the Lagrangian frame is
given by ~E′ = −~∇′φ′ − ∂

∂t
~A′, where φ′ is an electric scalar potential. Using the gauge condition ~∇′ · σ ~A′ = 0,

we can reformulate the dynamo equation (8) in terms of potentials as

~∇′ · σ~∇′φ′ = 0 (9)

σ
d ~A′

dt
= −~∇′ × 1

µ
~∇′ × ~A′ − σ~∇′φ′ (10)

Note that this formulation has an additional elliptic PDE (9) to solve for the scalar potential. A key advantage
of this formulation is that voltage, which is often the only known quantity for electromechanical engineering
applications, appears explicitly in the equations as an essential boundary condition for the elliptic solution of
(9). To compute force and heat terms, we define the secondary variables in terms of the potentials as

~B′ = ~∇′ × ~A′ (11)

~J ′ = σ ~E′ = −~∇′φ′ − d

dt
~A′ (12)

Finally, there are divergence constraints on both the primary and secondary fields, namely

~∇′ · σ ~A′ = 0 (13)
~∇′ · ~B′ = 0 (14)
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To discretize the potential formulation in the Lagrangian frame, we apply the mixed finite element methods
(FEM) of [3] which are based on the properties of differential forms and have been shown to preserve discrete
divergence-free properties and to maintain accuracy in secondary variables (e.g., ~J and ~B) even when computed
from potentials. Most importantly, the discrete vector fields transform identically to (6) and (7), thereby
preserving the invariance property of (3).

In our proposed ALE formulation the scalar potential will be discretized on mesh nodes (i. e., a discrete 0-
form field), the vector potential will be discretized on mesh edges (i. e., a discrete 1-form field) and the secondary
variables ~B and ~J will be discretized on mesh faces (i. e., discrete 2-form fields) as follows

φ′ ≈
n∑

i=1

viW
0
i (15)

~A′ ≈
n∑

i=1

ai
~W 1

i (16)

~B′ ≈
n∑

i=1

bi
~W 2

i (17)

~J ′ ≈
n∑

i=1

ji
~W 2

i (18)

where W l denotes a discrete l-form basis function. In [3], various mass, stiffness, derivative and discrete Hodge
matrices are defined. Given these matrices, the fully discrete form of the potential diffusion equation is given
in [3] by applying a Generalized Crank-Nicholson method to obtain

S0vn+α = f0n+α (19)

(M1(σ) + α∆tS1(µ−1))an+1 = (M1(σ)− (1− α)∆t S1(µ−1))an −∆tD01vn+α (20)

where α ∈ [0.1] is weighting parameter which determines the type of integration such that

α =





0 Explicit, 1st Order Accurate Forward Euler
1/2 Implicit, 2nd Order Accurate Crank Nicholson
1 Implicit, 1st Order Accurate Backward Euler

Once the values for the primary potentials have been solved for, the discrete secondary fields can be computed
as

en+α = −K01vn+α − 1/∆t(an+1 − an) (21)
bn+1 = K12an+1 (22)

M2(σ−1)jn+α = H12en+α (23)

These terms are used to compute ~J ′ × ~B′ forces which will accelerate the mesh nodes during the Lagrangian
motion step. The discrete divergence constraints are given by

(D01(σ))T a = 0 (24)
(D01(σ))T e = 0 (25)

K23b = 0 (26)

and as shown in [3], these constraints are implicitly satisfied for all time, assuming the initial conditions and
the source terms are divergence free.

To demonstrate a fully coupled Lagrangian calculation, we consider a numerical experiment in which a 5 KV
capacitor bank is discharged into a can shaped aluminum structure (see Fig. 1). The voltage through the can
(effectively an inductive and resistive load) is computed via a simple SPICE model. The resulting voltage vs.
time profile is then used as an essential boundary condition for the discrete scalar potential solve of (19) which



510 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

drives the problem. An essential boundary condition of the form n̂× ~A′ = 0 is applied to the front side of the
mesh while the remainder of the surface is subject to the natural boundary condition n̂ × 1

µ
~∇′ × A′ = 0. A

peak current of roughly 0.8 MA is generated in the can, creating a ~J ′× ~B′ force which causes the can to initially
compresses (or implode). However, the force is not strong enough to cause the aluminum can to yield, and so
the can effectively rings over time in an elastic response as shown in Figs. 1 and 2.

Figure 1: Snapshot of the fully coupled electrome-
chanical simulation. In this image the aluminum
can is elastically expanding after initially being com-
pressed. The displacement has been exaggerated by
a factor of 300 for visual clarity.

Figure 2: Measured pressure response in the alu-
minum can due to an electromagnetic force.

3. Constrained Transport Methods on Unstructured Grids
During the optional Eulerian advection phase of our operator split method, the computed electromagnetic

values must be remapped (or advected). Remapping refers to the process of updating the representation of the
field given a new grid. We consider only new grids which are “nearby” in the sense that only small perturbations
of the grid are allowed (i. e., the mesh nodes should not travel farther than one mesh element in any one time
step). This is known as the continuous remap approximation (CRA).

We propose to use the so called constrained transport method originally developed by [4] and later expanded
by [5]. Suppose we have calculated the magnetic flux density ~B′ in a Lagrangian time step via (22), we then
have a local element representation of ~B′

~Bold ≈
n∑

i=1

bold
i

~W 2,old
i (27)

The degrees of freedom (DOF) bold
i in this expansion carry the units of magnetic flux. For the special case of

lowest order (p = 1) basis functions (i. e., six DOF per element), this implies that we know the magnetic flux
through every face in the Lagrangian mesh (or the “old” mesh). Now in a standard ALE step, the old mesh is
relaxed under the CRA to a new mesh. Therefore, our goal is to compute new values of the magnetic flux bnew

i

which will allow us to represent the magnetic flux density on the new mesh. For the special case of lowest order
(p = 1) basis functions, the discrete divergence free property is simply a statement that the 6 fluxes in the face
sum to zero. The goal of constrained transport is to preserve this property on the new mesh.

For unstructured hexahedral grids, we can update the magnetic flux (or “vector potential flux” ~A · d~x) by
effectively solving Faraday’s law for a moving conductor (equivalent to magnetic transport under the “frozen-
flux” condition)

Φnew ≈ Φold −
∮

C

(~u× ~B) · d~l (28)

where ~u is the mesh displacement. Our goal now is to apply (28) in an algorithmic fashion to update the
fluxes on the faces of a new mesh. A schematic representation of this process is shown in Fig. 3. It is clear from
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the depiction of Fig. 3 that we can approximate the flux through a new face given the flux through the old face
and a “measurement” of the time rate of change of flux (an effective voltage) along the closed circuit path C
depicted in green. For a given face in the new mesh, the algorithm of (28) can be used to update the edge flux
contributions

Figure 3: Schematic diagram depicting the relationship between magnetic flux through “old” and “new” mesh
faces and the most accurate location for “measuring” the update EMF.

~A · dx for each edge in the face (thereby updating the vector potential) or the total magnetic flux ~B · d~a
through the face. By construction, the new flux values will sum to zero, provided the old fluxes do so as well.
In order for this algorithm to work, ~B must be evaluated at the displacement vector midpoints for the discrete
path integral; however, this is problematic for faced based representations of ~B, since they are by construction,
discontinuous along element edges. To overcome this, a “smooth” ~B field must be patch recovered using a
continuous vector nodal approximation.

4. Conclusions
We have presented and discussed an operator split approach for solving the coupled equations of elec-

tromechanics and magnetohydrodynamics using the novel mixed finite element methods of [3] to discretize the
equations of electromagnetic diffusion. We have presented preliminary results for a fully coupled Lagrangian
calculation and have discussed methods for advecting magnetic flux for ALE calculations.
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