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Abstract—Electrical impedance tomography (EIT) is a non-invasive imaging technique where a conductivity
distribution in a domain is reconstructed from boundary voltage measurements. The voltage data are generated
by injecting currents into the domain. This is an ill-conditioned non-linear inverse problem. Small measurement
or forward modeling errors can lead to unbounded fluctuations in the reconstructions. A forward model describes
the dependence of the noiseless voltage data on the conductivity distribution. The present work focuses on
applying the high-order finite element method (p-FEM) for forward modeling. In the traditional version of the
finite element method (h-FEM), the polynomial degree of the element shape functions is relatively low and
the discretization error is reduced by increasing the number of elements. In the p-version, in contrast, the
polynomial degree is increased and the mesh size is kept constant. In many applications of the finite element
method the performance of the p-version is better than that of the h-version. In this work, it is proposed that
the p-version provides more efficient tool for EIT forward modeling. Numerical results are presented.

1. Introduction
The electrical impedance tomography (EIT) problem is to reconstruct an unknown conductivity distribution

σ in an object Ω from a set of noisy voltage measurements performed on the boundary ∂Ω This problem was first
introduced in 1980 by Calderón [1]. At the present, EIT has numerous applications. These include detection of
tumors from breast tissue [5], measuring brain function [8], imaging of fluid flows in process pipelines [10], and
non-destructive testing of materials [13]. For a review on EIT, see Cheney et al., [2].

In the present version of electrical impedance tomography, a current pattern I = (I1, I2, . . . , IL) is injected
into a two dimensional domain Ω through a set of contact electrodes e1, e2, . . . , eL placed on the boundary ∂Ω.
The injected currents induce a potential field u in the domain and a electrode voltages U = (U1, U2, . . . , UL).
The measurement data are gathered by injecting a set of linearly independent current patterns and measuring
the corresponding electrode voltages. The conductivity distribution in Ω is to be reconstructed from these
voltage measurements. This is a non-linear ill-conditioned inverse problem: small errors in the measurements
or in the forward modeling can produce large errors in the reconstructions.

The focus of this paper is in efficient forward modeling. A forward model describes the dependence of the
noiseless voltage data on the conductivity distribution. The complete electrode model by Somersalo et al., [9]
and its simulations through the traditional finite element method (h-FEM) and the high-order finite element
method (p-FEM) are considered. According to the complete electrode model, the potential distribution in the
domain and the voltages on the electrodes can be determined by solving an elliptic boundary value problem.
Finite element simulation of this forward model has been described by Vauhkonen [12]. In the h-version of FEM,
the polynomial order p of the element shape functions is relatively low and the discretization error is reduced
by decreasing the element size h. In the p-version, in contrast, the polynomial order is increased and the mesh
size is kept constant. Processes where either the mesh is refined or the polynomial degree is increased are called
h− and p-extensions, respectively. Both extension processes increase the dimension of the finite element space
which is denoted by N . Combinations of h− and p-extensions are called hp-extensions (hp-FEM). Descriptions
of h−, p− and hp-versions of FEM are given e. g., in a book by Szabo and Babuska [11].

This work presents numerical results on performances of h− and p-extensions in finite element simulation
of the complete electrode model. The motivation for this study is that the solution of the complete electrode
model equations can be very smooth in the interior part of Ω and that in finite element computations, it is
typical that p-extensions are very efficient in problems with smooth solutions. For example, when the Poisson
equation ∆u = f in a two-dimensional domain Ω with zero boundary conditions on ∂Ω has a smooth solution
and uniform mesh refinement is used, the finite element solution uh satisfies the inequality ‖u−uh‖H1(Ω) ≤ Chp,
where h is the mesh size, p is the polynomial degree, C is some constant, and H1(Ω) denotes the corresponding
Sobolev space norm. Since in two dimensions the dimension of the finite element space N grows at the rate
O(p2/h2), one can deduce from the inequality, that as a function of N the error ‖u− uh‖H1(Ω) cannot converge
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slower in p-extensions than in h-extensions. For detailed description on h−, p− and hp-convergence, see Gui
and Babuska [4].

2. Finite Element Simulation of the Complete Electrode Model
In the complete electrode model, the effective contact impedance between the electrode el and the boundary

is characterized by the number z` > 0. The electrode voltages U induced by the current pattern I can be found
by solving the elliptic boundary value problem described by the equation

∇ · (σ∇u) = 0 (1)

in the domain Ω, by the boundary conditions
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on ∂Ω and by Kirchoff’s current and voltage laws
∑L

`=1 I` = 0 and
∑L

`=1 U` = 0. According to Somersalo et al.,
[9], with certain assumptions made on the domain and on the conductivity distribution, there exists a unique
pair u ∈ H1(Ω) and U ∈ RL that satisfies the weak formulation of this problem. The finite element solution of
these equations is the pair

uFE =
N∑

i=1

αiϕi and UFE =
L−1∑

i=1

βi(e1 − ei+1), (3)

where ϕ1, ϕ2, . . . , ϕN are the shape functions of the finite element space and e1, e2, . . . , eL are the standard basis
vectors of RL. The coefficients α1, α2, . . . , αN and β1, β2, . . . , βN can be found by solving the linear system of
equations Ax = b. The entries of the vectors x and b are given by xi = αi and bi = 0 if i ≤ N , otherwise
xi = βi−N and bi = (e1 − ei+1−N )T I. The system matrix entries are given by
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(4)

where δi,j is the Kronecker delta.

3. Hierarchic Shape Functions for p-extensions
In the standard p-version of the finite element method, the shape functions used in p-extensions are hierarchic.

In this context, the term hierarchic means that the set of shape functions of polynomial order p is in the set of
shape functions of order p + 1, and the number of shape functions which do not vanish at the vertices and the
sides of the elements is minimal. Hierarchic shape functions are constructed by using Legendre polynomials

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n, n = 0, 1, . . . . (5)

Due to the orthogonality properties of these polynomials, hierarchic shape functions are well-suited for computer
implementation and have very favorable properties from the point of view of numerical stability [11].

In the one-dimensional case, the standard element is the interval [−1, 1]. For this element, the one-
dimensional hierarchic shape functions of polynomial order p are defined as

N1(ξ) =
1− ξ

2
, N2(ξ) =

1 + ξ

2
, Nn(ξ) = φn−1(ξ), n = 3, 4, . . . , p + 1, (6)

where φn is defined as φn(ξ) =
√

n− 1/2
∫ ξ

−1
Pn−1(ξ) dt. These are organized to two categories. The first one is

formed by the polynomials N1 and N2, that are called the nodal shape functions, the external shape functions,
or the vertex modes. The higher order polynomials N3, N4, . . . , Np+1 form the second category. These vanish
at the endpoints of the interval [−1, 1] and they are called the bubble functions, the internal shape functions,
or the internal modes.
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The two-dimensional quadrilateral standard element is the square [−1, 1]× [−1, 1]. The corresponding two-
dimensional hierarchical shape functions of polynomial order p are products of one-dimensional shape functions.

Nn,m(ξ, η) =
1
4
(1 + (−1)nξ)(1 + (−1)mη), n = 1, 2, m = 1, 2,

N (0)
n,m(ξ, η) = φn(ξ)φm(η), n = 2, 3, . . . , p, m = 2, 3, . . . , p,

N (1)
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1
2
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N (2)
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1
2
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These are organized to three categories: vertex modes Nn,m, internal modes N
(0)
n,m, and side modes N

(1)
n , N

(2)
n .

In this work, only quadrilateral elements are used. Construction of hierarchical shape functions for triangular
elements has been described e. g., in [11].

Figure 1: The square shaped domain, the locations of the 16 electrodes, and the coarsest mesh (h0 = 1/9) used
in the computations.

4. Numerical Experiments
Numerical experiments were performed concerning performances of h- and p-extensions in FEM simulation

of the complete electrode model. In these computations, the domain Ω was the unit square [0, 1] × [0, 1] and
the conductivity distribution σ in Ω was identically one. Sixteen electrodes with equal contact impedances
z1 = z2 = . . . = z` = 1 were placed evenly on the boundary (Fig. 1). All the contact impedances were assumed
to be equal to one. The generated voltage data constisted of L−1 electrode voltage vectors U (1), U (2), . . . , U (L−1)

induced by pair drive [7] current patterns I(1), I(2), . . . , I(L−1) such that I
(k)
k = 1 and I

(k)
k+1 = −1 and all other

entries are zero. In each of these current patterns, the two current injecting electrodes were located next to
each other. The finite element method was used both in data generation and simulation. Each finite element
mesh used in these computations consisted of equal-sized square shaped elements as illustrated in Fig. 1. In
data simulation, bilinear and hierarchic shape functions were used in h- and p-extensions, respectively. One h-
extension process and three p-extension processes were executed (Table 1). In these processes, elements of sizes
h = h0, 2−1h0, . . . , 2−7h0 with h0 = 1/9 and polynomial orders p = 1, 2, . . . , 8 were employed. The growth of
the dimension of the finite element space is reported in Table 1. In data generation, the size and the polynomial
order of the elements were h = 2−3h0 and p = 8. A vector containing all the generated data is denoted by
UEX and a vector containing the simulated electrode voltages is denoted by UFE . Accuracy of the simulation
is measured in `2-norm by the relative error

RE = ||UEX −UFE ||2/||UEX ||2. (8)

5. Results and Discussion
Figure 2 illustrates the convergence of the relative error (8) in the h- and p-extension processes. The relative

error is plotted against the dimension of the finite element space on log10-log10 scale. The results show that
p-convergence rate is faster than the rate of h-convergence.

In finite element computations, p-extensions are often motivated by the fact that the solution is smooth
whereas h-extensions are favorable in the case of non-smooth solutions [11]. According to Evans [3], the interior
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Table 1: The executed h- and p-extension processes: h- and p-values and finite element space dimensions. In
data generation, the size and the polynomial order of the elements were h = 2−3h0 and p = 8 (down right
corner).

index type h-values p-values finite element space dimensions

(a) h h0, 2
−1h0, . . . , 2

−7h0 1 100 361 784 1369 2116 3025 4096 5329

(b) p h0 1, 2, . . . , 8 100 280 460 721 1063 1486 1990 2575

(c) p 2−1h0 1, 2, . . . , 8 361 1045 1729 2737 4069 5725 7705 10009

(d) p 2−3h0 1, 2, . . . , 7 1369 4033 6697 10657 15913 22465 30313 —

Figure 2: The relative error (8) in the executed h− and p-extension processes (a), (b), (c) and (d) plotted against
the dimension of the finite element space on log10-log10 scale. The straight line represents the h-extension process
(a). The three curved lines from left to right represent the p-extension processes (b), (c) and (d) respectively.
The dashed lines show the h-convergence rate in the cases where p = 2, 3, 4, 5, 6 or 7.

potential distribution u ∈ H1(Ω) determined by the complete electrode model is smooth provided that the
conductivity distribution is smooth. However, it is important to point out that the potential distribution is not
smooth in the vicinity of the boundary, since according to the boundary conditions (2) the normal derivative
∂u/∂n is discontinuous on ∂Ω. Consequently, it is possible that near the boundary the performance of h-
extensions can be better than that of p-extensions. It is also important to note that electrical impedance
tomography involves a variety of applications, e. g., detection of tumors, where the conductivity is a non-smooth
or a discontinuous function. A local discontinuity in the conductivity distribution, e. g., a tumor, causes local
non-smoothness of the interior potential distribution in the vicinity of the discontinuity [3]. This means that the
structure of the conductivity can affect the performance of h- and p-extensions in different parts of the domain.
In future work it would be interesting to explore performances of different hp-extension processes with different
conductivity distributions. For example, whether a priori information about the conductivity distribution can
be used when designing hp-extensions could be an issue in electrical impedance tomography.

From the computational point of view, one important difference in h- and p-extensions is that in p-extensions
a lot more computational effort is spent on numerical integration when constructing the system matrix (4) due
to the high polynomial order of the shape functions. Electrical impedance tomography involves reconstruction
methods, e. g., Markov chain Monte Carlo sampling [6], where efficient forward modeling in terms of compu-
tation time is essential, because the forward model equations have to be solved numerous times during the
reconstruction process. Another interesting future consideration would be whether there are computationally
tractable ways to obtain system matrices needed in EIT reconstruction, e. g., whether a priori knowledge about
the conductivity distribution can be used when constructing a system matrix.
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6. Conclusion
In this work, the p-version of the finite element method was applied to simulation of the complete electrode

model. The motivation for this study was that the solution of the complete electrode model equations can
be smooth in the interior domain and that it is typical that the p-version is very efficient in problems with
smooth solutions. It was shown numerically by using the unit square that the performance of the p-version is
better than that of the h-version when uniform mesh refinement is used. Since the solution of the complete
electrode model equations is non-smooth in the vicinity of the boundary, an important topic for the future
work is to explore the performance of the hp-version of FEM. From the computational point of view, one
characteristic difference in h- and p-versions of FEM is that in p-version a lot more computational effort is
spent on construction of a system matrix. Another important future consideration is to find computationally
tractable ways to obtain system matrices needed in EIT reconstruction. It is also an important issue whether a
priori knowledge about the conductivity distribution can be used when designing a p-FEM implementation to
be used in EIT reconstruction.
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