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Wave Propagation in Grounded Dielectric Slabs with Double
Negative Metamaterials

W. Shu and J. M. Song
Iowa State University, USA

Abstract—In this paper, the wave propagation in a grounded dielectric slab with double negative (DNG)
metamaterials is studied. Dramatically different evanescent surface modes (electromagnetic fields exponentially
decay both in air and inside the slab) are observed. They are highly dependent on medium parameters. An
infinite number of complex surface modes are found to be existing which have proper field distribution in the air
region. The investigations on the Poynting vectors show that they do not carry away energy in both transverse
and longitudinal directions.

1. Introduction
The guided dielectric slab with a DNG medium has been studied by several groups. Various novel properties

are observed: [1] and [2] found that there are special regions for TM (transverse magnetic) modes where
two different propagation constants exist. [3] theoretically considered the properties of a planar two-layered
waveguide, whose one layer is a double positive (DPS) medium and the other is a DNG medium. Super
slowwaves with extremely short wavelengthes were found whose fields exponentially decay from the interface
of the two slabs inside both layers. These guided modes, termed as evanescent surface modes, were also found
by [4] and [5], respectively. P. Baccarelli and his colleague suggested the concept of surface wave suppression
that ensures the absence of both ordinary and evanescent surface modes. This is very attractive in view of
taking DNG medium as a potential substrate candidate to reduce edge diffraction effects and enhance radiation
efficiency for microstrip antennas [6].

However, so far as the authors are aware no study on the complex modes and Poynting vectors has been
reported. This makes the mode spectra of DNG media unpleasantly incomplete. In this paper, the authors
focus on the properties of the evanescent surface modes and the complex modes, both of which belong to the
proper mode spectra of the grounded dielectric slab with a DNG medium. It is found that the evanescent
surface modes are highly dependent on the medium parameters and an infinite number of complex modes exists
which have exponentially decaying fields in the air region. They are termed complex surface modes. The study
on the Poynting vectors shows that they have zero power flows in both transverse and longitudinal directions.

2. Eigen Equations and Graphical Solutions
The structural setup of interest here is a grounded dielectric slab of thickness d (see Figure 1). Region one is

a DNG medium and region two is air. It is well known that to ensure a positive stored energy in the dielectric
layer, passive DNG media must be dispersive [7]. However, for simplicity we assume that they are isotropic,
losseless, and non-dispersive. This assumption is found to be acceptable since a small dispersion of ε and µ can
satisfy the constraints.
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Figure 1: Geometry structure of a grounded dielectric slab with DNG medium (εr1 < 0, µr1 < 0).

Using the well-known transverse resonance method [8], the eigen equations for ordinary (γy1 = jky1) real
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Figure 2: Graphical solutions for TE and TM modes. Solid lines in the first and fourth quadrants represent
(1) or (2); solid lines in the second quadrant represent (4) or (5); dashed line in the first and fourth quadrants
represents (3); dashed line in the second and third quadrants represents (6). The medium parameters are:
εr1 = −2.5, µr1 = −0.5, εr2 = 1, µr2 = 1.

modes are:
µr2

µr1
(ky1d) cot(ky1d) = −αy2d for TE (1)

εr2

εr1
(ky1d) tan(ky1d) = αy2d for TM (2)

(ky1d)2 + (αy2d)2 = (k0d)2(εr1µr1 − εr2µr2) (3)

The eigen equations for evanescent (γy1 = αy1) real modes are:

µr2

µr1
(αy1d) coth(αy1d) = −αy2d for TE (4)

εr2

εr1
(αy1d) tanh(αy1d) = −αy2d for TM (5)

(αy2d)2 − (αy1d)2 = (k0d)2(εr1µr1 − εr2µr2) (6)

where k2
0 = ω2µ0ε0. γy1, γy2 are the y-direction wave constants of the two layers. Their relationship to the

longitudinal wave constant (z-direction) γ is written as:

γ2
yi = −k2

0εriµri − γ2 (i = 1, 2) (7)

Graphical representations of the above equations are shown in Figure 2. The mode index notation here
follows [9]. Notice that in the first and second quadrants, αy2 is positive and the fields exponentially decay in
the air region (proper); in the third and fourth quadrants, αy2 is negative and the fields exponentially increase
in the air region (improper). The x-axis is divided into two segments. The right half is for ky1d and the fields in
the dielectric layer are sine/cosine standing waves (ordinary), while the left half is for αy1d and the fields in the
dielectric layer are exponentially distributed (evanescent). Therefore, the intersection in the second quadrant
represents the proper evanescent surface mode, which does not exist for a DPS medium.

Another important difference for a DNG medium that can be read from Figure 2 is that the ordinary surface
mode solutions are no longer monotonic. It is clear from the subfigure in the left corner of Figure 2(a) that there
are two intersections as the radius of the dashed circle decreases, which corresponds to a decrease of frequency.
Once the circle has only one tangential point with the solid line, further decreasing frequency will cause this
mode to be cutoff. The same thing happens to TM modes in Figure 2(b) in a more obvious way. These two
possible modes have two different power flow distributions. One has more power flowing in the air region than
in the dielectric region, making the total power flow in the same direction as the phase velocity. The other is
in the opposite way and displays a backward property. More details on the Poynting vectors are addressed in
Section 4.
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Figure 3: Two possible dispersion curves for TE proper surface modes (solid lines) and TE improper leaky
modes (dotted lines). The dashed line, representing

√
εr1µr1, is the watershed for evanescent surface mode and

ordinary surface modes.

3. Evanescent Surface Mode
As stated in Section 2, the proper evanescent surface mode does exist with a DNG medium. It is the

intersection in the second quadrant. The normalized effective dielectric constant εeff = (β/k0)2 for evanescent
surface mode is larger than both εr1µr1 and εr2µr2. Therefore the transverse propagation constant in the
dielectric layer γy1 =

√
−k2

0εr1µr1 − γ2 = k0
√

εeff − εr1µr1 is a pure real number. The electromagnetic fields
are no longer sine/cosine standing waves, but have the form of Ae−αy1y + Beαy1y.

It is found, however, that the dispersion curves for evanescent surface modes are very complicated, and they
are highly dependent on the medium parameters. Figure 3 shows two dispersion diagrams for TE1 mode with
different medium parameters. The dispersion curves represent the intersection points of the dashed line and
the first solid branch in Figure 2(a), including the part in the second quadrant. The solid line in Figure 3 is
for proper modes, while the dotted line is for improper mode, which is the set of intersections in the fourth
quadrant in Figure 2(a). The dashed lines in both figures depict the value of

√
εr1µr1. They are the watersheds

by which one can tell the evanescent surface mode from ordinary ones.
In Figure 3(a), the evanescent surface mode has low cutoff frequency. As the frequency increases, the ordinary

surface mode becomes an evanescent surface mode and its effective dielectric constant, εeff , keeps increasing.
In Figure 3(b), however, the situation is reversed. The evanescent surface mode has a high cutoff frequency
above which it becomes the ordinary surface mode. At the low frequency range, the evanescent surface mode
has an extremely large εeff , which decreases rapidly as the frequency increases. One can refer to the subfigures
of Figure 3 to check the validations. The reason for such dramatically different dispersion curves is that with
DNG metamaterials, one can not only make ε and µ simultaneously negative but also let their absolute values
be less than one [5]. From (1) and Figure 2(a), it is easy to see that the crossing point of the first solid branch
TE1 with the x-axis is fixed at (π/2, 0), while the crossing point with the y-axis noted as ‘A’ in Figure 2(a)
is (0, |µr2/µr1|). With a conventional DPS medium, µr1 is always equal to unity, or slightly greater or smaller
than unity as in the case of paramagnetic or diamagnetic materials. With metamaterials, however, µr1 is not
confined near unity any more and the intercept with the y-axis may change a lot. This change affects the
possible intersections of the first solid line and the dashed line in Figure 2(a) and finally results in dramatically
different dispersion curves.

4. Complex Surface Modes and Poynting Vectors
It is well known that the complete proper mode spectra for a DPS dielectric slab include discrete surface

modes and continuous radiation modes, both of which are real modes [8]. With a DNG medium, however, it
is proved by the authors that the complex roots of the eigen equations are exclusively on the top Riemann
sheet [10]. These solutions, termed complex surface waves, form another set of proper modes since they have
exponentially decaying fields in the air region and satisfy the boundary conditions at infinity. Unlike real surface
modes, complex surface modes have high cutoff frequencies below which they exist.

Figure 4 shows the dispersion diagrams for both TE and TM modes, including evanescent, ordinary, and
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Figure 4: Dispersion diagrams for all modes. Solid line is for normalized β of the proper modes. Dashed line
is for normalized α of the proper modes. Dotted line is for normalized β of the improper modes. The medium
parameters are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1.

complex surface modes. Also included are improper leaky modes drawn as dotted lines. When the frequency is
much lower than the first cutoff frequency of the real modes, all complex modes exist with very high normalized
α and β. As the frequency increases, β/k0 tends to decrease rapidly within a very narrow frequency range; after
that it increases slowly till its cutoff frequency. Notice it is not monotonic and the value of β/k0 can be less
than unity, which is a notable difference compared with evanescent and ordinary surface modes. The curve of
α/k0, however, monotonically decreases very fast as the frequency increases. At the cutoff point, α reaches zero
and β becomes the starting point of the real mode. The real surface mode bifurcates into two branches from
this point. One branch has an increasing β/k0 as the frequency goes high, while the other has a decreasing
β/k0, which will reach unity shortly. This property is expected from Figure 2. Further increasing frequency
makes β/k0 of the second branch begin to rise. However, it is no longer a proper mode.

It is found that the complex surface modes have zero power flows [10]. To derive the Poynting vector for
complex modes, γy1, γy2, and γ are assumed to be:

γy1 = a + jb

γy2 = u + jv

γ = α + jβ (8)

The Poynting vector is written as

STE
z =

1
2
ExH∗

y =
|A|2
2

{
STE

z1 , for 0 < y < d
STE

z2 , for y ≥ d
(9)

where A is the electric field intensity and STE
z1 and STE

z2 are as follows:

STE
z1 (y, z) =

β + jα

2ωµr1
e−2αz[cosh(2ay)− cos(2by)] (10)

STE
z2 (y, z) =

β + jα

2ωµr2
e−2u(y−d)−2αz[cosh(2ad)− cos(2bd)] (11)

Figure 5 shows the dispersion diagram and the integral results of Poynting vector for the TE3 mode. In
Figure 5(a), only the complex mode exists (branch ‘A’) when the frequency is lower than the cutoff frequency of
the real surface mode. The zero power flow in z-direction in Figure 5(b) shows that the complex surface mode
does not carry away any energy. As the frequency increases, the real surface mode begins. The top branch
(branch ‘B’) of the real mode carries a negative power flow and shows backward properties. When a waveguide
operates in this mode, its fields are largely confined inside the dielectric layer. The bottom branch (branch ‘C’)
of the real mode carries a positive power flow and its fields extend far away in the air region. Further increasing
frequency causes the fields in the air region to decay more slowly, and eventually reach infinity. At that point,
the radiation boundary conditions are violated and the mode becomes improper.
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Figure 5: Dispersion diagram and the power flow in z-direction for TE modes. ‘A’ is for complex surface mode;
‘B’ is for top branch of the real surface mode; ‘C’ is for bottom branch of the real surface mode. The medium
parameters are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1.

5. Conclusion
In this paper, an investigation on the mode properties of a grounded dielectric slab with a DNG medium has

been dealt with. The graphical method is used to find the possible real roots. Dramatically different dispersion
curves of evanescent surface modes are observed, showing that they are very sensitive to the material parameters.
It is found that there is an infinite number of complex surface modes with a DNG medium and they do not
carry away energy. Although the considered medium here is idealized and currently cannot be realized, the
results of this paper still unveil some exotic properties as well as potential applications of the metamaterials.
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