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RCS Prediction of Large Cavities on a Distributed Memory
Parallel Computer
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Abstract—This paper describes the implementation and results of a finite element based radar cross section
(RCS) prediction method on a distributed memory parallel computer. This method has been specifically devel-
oped for the analysis of large cavities with model reduction of rotationally periodic and mirrored geometries.
Realistic propulsion system components have been modeled with this method at X-band on shared-memory
parallel computers [1]. This paper describes the extension of this method to distributed memory parallel com-
puters and the inherent communication process required. The paper also discusses timing results and parallel
efficiency.

1. Introduction
Engine system inlet and exhaust ducts are among the most difficult areas to reduce the RCS of a military

aircraft. Methods of predicting the performance of such devices are important to achieving optimal designs in
a timely and cost efficient manner.

For radar frequencies of interest, an engine cavity is considered to be electromagnetically large —where
the physical dimension is much larger than the wavelength. The most widely used methods for modeling large
objects are based on asymptotic techniques such as ray tracing, diffraction theory, and physical optics. However,
for cavity structures in particular, the limited accuracy of asymptotic methods makes them suitable only for
first-order engineering approximations.

Compounding the challenge of modeling the electromagnetic large aspect of a military engine cavity is the
requirement of modeling complex-shaped geometries, such as turbine blades, cooling holes, flame holders, etc.,
and the requirement of modeling radar absorbing materials in both bulk and composite configurations.

GE Aircraft Engines has for a number of years been developing techniques based on the finite element
method (FEM). FEM has shown its robustness in modeling the complex material and geometry configurations
at the accuracy levels necessary for low observable designs. Methods presented previously [1] and reviewed
here, incorporate the use of special transforms for model reduction of the rotationally periodic engine geometry.
These transforms, coupled with the use of specialized sparse matrix solution techniques, have allowed our FEM
to model cavities at the higher frequencies of interest.

Results presented previously were performed on parallel computers utilizing a shared memory facility. These
computers are limited to a relatively low number of processors that can be efficiently run in parallel (approx-
imately ten processors). To extend this, the present computer architecture of choice is a distributed memory
system where processors maintain their own computer memory and information is passed between them by a
message passing system. Preliminary results in using this type of parallel computer for our FEM approach are
described here.

2. Formulation

2.1. Basics
The mathematical frequency domain finite element formulation used here is of a standard type using a

curl-curl type wave equation for the electric field:

∇× 1
jωµ

∇× E + jωεE = 0 (1)

A dual formulation for the magnetic field could also be utilized, however, because resistive sheets would have
to be “gapped” [2] in the magnetic field formulation, the electric field formulation is preferred for not having
this cumbersome modeling step.

Standard types of finite elements, with hexahedron, wedge, and tetrahedral shapes are used (Fig. 1). The
order of the edge-type element basis function used is commonly referred as H1 type—where the field behavior
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Figure 1: Edge element tetrahedral, wedge, and hexahedral shapes.

is modeled as linear along the edge direction and quadratic in the orthogonal direction. The element types used
here are also curvilinear in construction for better modeling of curved surfaces.

Applying the Galerkin weighted residual method to Eq. 1 results in a sparse set of matrix equations, A, with
a forcing function, b, representing the incident electromagnetic field, the field solution at each finite element
unknown is represented by the vector x in Eq. 2.

Ax = b (2)

For geometries of interest and for discretization levels of four elements per wavelength or better, this sparse
matrix may result in the tens of millions of unknowns for the higher frequencies of interest. However, methods
can be employed to reduce the model for solution in a timely manner on a not-so massive parallel computer.
For rotationally periodic structures such as the engine front frame shown in Fig. 2(a), the resulting matrix
would have a repeatable block pattern, as shown in Fig. 2(b). This matrix type is known as a block circulant
matrix [3].

Figure 2: (a) Engine front frame.

 

Figure 2: (b) Matrix with repeating block structure.

The number of blocks in a row/column of the matrix in Fig. 2(b) corresponds to the number of periodic
structures “p” within the device. Also, the order of the block would be equal to the number of finite element
unknowns one periodic “pie slice” volume of the structure —see Fig. 3(a).

The repeated pattern matrix of Fig. 2(b) can be reduced to a block diagonal matrix, as shown in Fig. 3(b),
by applying a discrete body of revolution Fourier transform [4]. This transform can be represented by matrices
P and P−1 that left and right multiplies the system matrix A of Eq. 2, respectively:

PAP−1Px = Pb (3)

Although this discrete Fourier transform is for rotationally symmetric structures, similar transforms have
been constructed for geometries with mirror plane symmetries.

This block diagonal form has multiple advantages over solving the overall system as in Fig. 2(b). First,
each block can be solved independently and in parallel simultaneously. Next, it dramatically reduces the
“bandwidth” of a sparse matrix factorization scheme leading to a geometric decrease in the number of floating
point operations. And lastly, the total solution is reconstructed from these independent sets without loss of
accuracy.
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Figure 3: (a) Finite element model of one periodic section.

 

Figure 3: (b) Block diagonal matrix.

However, for the size of problems required for realistic propulsion systems, the individuals block themselves
must also be solved in parallel. The necessity of this is two-fold: first the speed increase of parallel system is
required to incorporate the analysis into a timely design iteration process, and second, the computer memory
requirements of a block would exceed an individual processor and must be spread over multiple nodes of a
parallel system.
2.2. Parallel Matrix Solution

A matrix factorization method is used that takes advantage of the aperture nature of this cavity problem.
This solution method is similar to the one presented in [5] and is applied in both parallel and serial versions
of the analysis code. This matrix factorization method takes advantage that the forcing function of the system
is applied only to the front surface aperture of the cavity. Also, the calculation of the RCS requires the field
solution only over this same aperture surface.

Factorization schemes, by themselves, are attractive over alternative iterative schemes because of the need
to solve for multiple look-angles and polarizations. The total sum of these solutions, and again in particular
for higher frequency problems where the RCS vs. look-angle curves may have high scintillation patterns, may
order into the one-thousand or better range.

This frontal-factorization scheme takes advantage of the cavity/aperture geometry by factoring from the
opposite end of the cavity (opposite from the aperture surface) to the aperture surface in a wave-front fashion.
Because back-substitution is only required over the aperture surface to calculate RCS, the memory for the
factored matrix behind the “wave-front” is released and reused. This keeps the total memory requirement to a
minimal amount. Also, the order for the number of floating point operations is equal to

O(N3
wN`) (4)

where Nw is equal to the number of unknowns in the wave-front and N` is the number of unknown along the
length of the cavity. As seen from Eq. 4, the reduction of Nw by the periodic decomposition scheme by a factor
of 1/p where p is the number of periods, drastically reduces the total number of floating point operations.

For serial computers or parallel computers with shared memory architectures, this “wave-front” banded
factorization scheme is a straightforward procedure. For distributed memory cluster computers, the algorithm
is somewhat challenging to construct and implement with efficient parallelism. In our method, a block method of
factorization [6] with a skyline profile is used. Here, the individual factorization blocks are assigned to separate
processors on the cluster computer. Data communication between processors is performed with the Message
Passing Interface (MPI) library.

3. Results
The computer used for the following two example problems is a Dell 2850 cluster. Each node of this computer

consists of dual Intel XeonTM processors running at 2.8GHz (512 kilobyte cache) with 4 gigabytes of memory.
The operating system is Red Hat Linux 9.0, Intel Fortran and C compilers were used, and the message-passing
library implementation is LAM MPI.

The first example is a test body representative geometry of an exhaust duct (see Fig. 4). This test geometry
has a length of 35 inches, a diameter of 38 inches, and has a rotational periodicity of 16. The geometry was
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meshed for a frequency of 10 GHz. This mesh has a mixture of hexahedral and wedge shaped elements. The
total number of cubic wavelengths of the cavity without model reduction is approximately 24000. The number of
finite element unknowns generated from the model-reduced mesh is approximately 1.57 million and the number
of non-zeros in the resulting matrix is 129.2 million. The total amount of memory used across all processors is
approximately 2.2 gigabytes.

Figure 4: Example exhaust duct test case.

This problem was run with a modest number of processors so that all harmonics of the discrete Fourier
decomposition could be run simultaneously on a cluster numbering less than twenty-five nodes.

Runs with two and three nodes (four and six processors, respectively) were performed. The timings for
matrix factorization are: approximately 25 hours for two-nodes and 23 hours for three-nodes. The total number
of floating point operations for the factorization is 332× 1012 and the floating point rate is 0.925 gigaflops per
processor (3.7 Gigaflops total) for the two node case and 0.671 gigaflops per processor (4.03 gigaflops total) for
the three node case. The parallel efficiency for the two-code case is 66 percent and the three-node case is 50
percent. 1644 solutions (822 look-angles with both polarizations) were solved for; the total solution and RCS
integration times were 516 seconds for two nodes and 504 seconds for three nodes.

The second example is another exhaust duct of greater internal geometric complexity and slightly larger in
size. The approximate length and diameter are 40 inches and 38 inches, respectively. It also has a rotational
periodicity of 16 but includes more internal structures that lead to a higher floating-point operation count. A
frequency of 10 GHz is used and the total number of cubic wavelengths without model reduction is approximately
27500.

The total number of finite element unknowns is approximately 2.5 million after model reduction (hexahedral
and wedge shaped elements were again used) and the number of non-zeros in the matrix is 203.5 million. The
total number of unknowns on the reduced model aperture surface is 8936.

The matrix factorization time is approximately 72 hours on five processors. The total number of floating
point operations for this factorization is 1.2 × 1015, which results in a rate of 0.94 gigaflops per processor
(4.7 gigaflops total). The total amount of memory across the five processors is approximately 6.0 gigabytes for
the wave-front factorization. The parallel efficiency is estimated at 68 percent.

4. Conclusions
This paper demonstrated the application of finite element analysis with the combination of model reduction

by rotational decomposition and the use of distributed memory parallel computers. The results presented
here are our first attempt at using a distributed memory parallel computer for this analysis method. The
authors believe that further parallel efficiencies can be obtained with added effort on methods of parallel matrix
factorization.
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