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Abstract—The limited-memory quasi-Newton optimization method with simple bounds has been applied to
develop a novel fully three-dimensional (3-D) magnetotelluric (MT) inversion technique. This nonlinear inversion
is based on iterative minimization of a classical Tikhonov-type regularized penalty functional. But instead of
the usual model space of log resistivities, the approach iterates in a model space with simple bounds imposed
on the conductivities of the 3-D target. The method requires storage that is proportional to ncp×N , where the
N is the number of conductivities to be recovered and ncp is the number of the correction pairs (practically,
only a few). This is much less than requirements imposed by other Newton type methods (that usually require
storage proportional to N×M , or N×N , where M is the number of data to be inverted). Using an adjoint
method to calculate the gradients of the misfit drastically accelerates the inversion. The inversion also involves
all four entries of the MT impedance matrix. The integral equation forward modelling code x3d by Avdeev et al.
([1, 2]) is employed as an engine for this inversion. Convergence, performance and accuracy of the inversion are
demonstrated on a 3D MT synthetic, but realistic, example.

1. Introduction
Limited memory quasi-Newton (QN) methods are becoming a popular tool for the numerical solution of

three-dimensional (3-D) electromagnetic (EM) large-scale inverse problems ([11, 7]). The reason is that the
methods require calculation of gradients of the misfit only, while at the same time avoiding calculations of
second-derivative terms. They also require storing merely several pairs of so-called correction vectors that
dramatically diminish the storage requirements. A more complete review on this subject may be found in [4].

In this paper we apply a limited memory QN optimization method with simple bounds (hereinafter, referred
to as LMQNB) to solve the 3–D magnetotelluric (MT) inverse problem. In section 2 we briefly describe the
setting of the inverse problem, as well as some key features of our implementation, referring the reader to the
paper [3] for details.

In section 3, we develop the theory and basic equations for the calculation of gradients of the misfit. We
demonstrate that the calculation of gradients at a given period is equivalent to only two forward modellings and
does not depend on the number of conductivities to be recovered. The mathematical details of the approach
are not presented here except the key formula (3), which is central to the method.

In section 4 we demonstrate how our inversion practically works on a synthetic, but realistic numerical
example. This example includes a tilted conductive dyke in a uniform half-space (see [17]). The results presented
are encouraging and suggest that the inversion may be successfully applied to solving realistic 3-D inverse
problems with real MT data.

2. 3-D MT Inversion

Let us first consider a 3-D earth conductivity model discretized by N cells, such that σ(r) =
N∑

k=1

σkχk(r),

where χk(r) =
{

1, r ∈ Vk

0, r /∈ Vk
, Vk is the volume occupied by k-th cell and r = (x, y, z). In the frame of MT

inversion conductivities σk (k = 1, . . . , N) of the cells are sought. This is a typical optimization problem, such
that ϕ(σ, λ) →

σ,λ
min, with a penalty function ϕ given as

ϕ(σ, λ) = ϕd(σ) + λϕs(σ), (1)

where ϕd = 1
2

NS∑
j=1

NT∑
i=1

αjitr[A
T

jiAji] is the data misfit. Here σ = (σ1, . . . , σN )T is the vector consisting of the

electrical conductivities of the cells; hereinafter superscript T means transpose and the upper bar stands for
the complex conjugate; N is the number of the cells; NS is the number of MT sites, rj = (xj , yj , z = 0), where
j = 1, . . . , NS ; NT is the number of the frequencies ωi, where i = 1, . . . , NT ; the 2×2 matrices Aji are defined as
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Aji = Zji−Dji, where Zji =
(

Zxx Zxy

Zyx Zyy

)

ji

and Dji =
(

Dxx Dxy

Dyx Dyy

)

ji

are matrices of the complex-valued

predicted Z(rj , ωi) and observed D(rj , ωi) impedances, respectively; αji = 2
NSNT

ε−2
ji

(
tr[D

T

jiDji]
)−1

are the
positive weights, where εji is the relative error of the observed impedance Dji; and λ is a Lagrange multiplier.
The sign tr [·] introduced above means the trace of its matrix argument, which is defined as tr [B] = Bxx +Byy,

for any B =
(

Bxx Bxy

Byx Byy

)
. As prescribed by the Tikhonov regularization theory [15] the penalty function

ϕ of (1) has a regularized part (a stabilizer) ϕs(σ). This stabilizer can be chosen in different ways. However,
this aspect of the problem is out of the scope of this paper. It is of importance that, as the conductivities
σk (k = 1, . . . , N) must be non-negative and realistic, the optimization problem (1) is subject to the bounds

l ≤ σ ≤ u, (2)

where l = (l1, . . . , lN )T and u = (u1, . . . , uN )T are respectively the lower and upper bounds and lk ≥ 0 (k =
1, . . . , N).

Optimization method. We notice that problem (1)-(2) is a typically optimization problem with simple
bounds (see [12]). To solve this problem we apply the limited memory quasi-Newton method with simple bounds.
Our implementation of this method is described in a companion paper [3], which demonstrates the application
of the method to the 1-D problem. At each iteration step l, we find the search direction p(l) as p(l) = −G(l)g(l),
where g(l) = ( ∂ϕ

∂σ1
, . . . , ∂ϕ

∂σN
)T is the gradient vector and G(l) is an approximation to the inverse Hessian matrix,

that is updated at every iteration using the limited memory BFGS formula (see [12], formula (9.5), p.225). The
next iterate σ(l+1) is then found as σ(l+1) = σ(l) +α(l)p(l), where the step length α(l) is computed by an inexact
line search. What is crucial in this approach it is that it requires 1) relatively small storage proportional to
ncp ×N , where ncp is the number of the correction pairs, and 2) only the calculation of gradients rather than
the time-consuming sensitivities and/or the Hessian matrices.

Calculation of gradients. To derive derivatives ∂ϕd

∂σk
we apply an adjoint method. This method uses

the EM field reciprocity and has been applied previously to calculate the sensitivities ([16, 9]) and for forward
modelling and inversion ([6, 13, 11, 5]). Let us now describe our implementation of such a technique.

It can be proven with some effort that

∂ϕd

∂σk
= Re





NT∑

i=1

∫

Vk

tr
[
uT

i Ei

]
dV



 , (3)

where tr[uT
i Ei] = u

(1)
x E

(1)
x +u

(1)
y E

(1)
y +u

(1)
z E

(1)
z +u

(2)
x E

(2)
x +u

(2)
y E

(2)
y +u

(2)
z E

(2)
z , the sign Re means the real part

of its argument and the superscript 1 or 2 denotes polarization of the source Ji. By definition, 3×2 matrices

Ei(r) =

(
E

(1)
x

E
(2)
x

E
(1)
y

E
(2)
y

E
(1)
z

E
(2)
z

)T

i

and ui(r) =

(
u

(1)
x

u
(2)
x

u
(1)
y

u
(2)
y

u
(1)
z

u
(2)
z

)T

i

satisfy the following equations

∇×∇×Ei −
√−1ωiµσ(r)Ei =

√−1ωiµJi, (4)

∇×∇× ui −
√−1ωiµσ(r)ui =

√−1ωiµ
(
jext
i +∇× hext

i

)
, (5)

where jext
i =

NS∑
j=1

αjipT Aji(H
−1
ji )T δ(r−rj), hext

i = − 1√−1ωiµ

NS∑
j=1

αjipT ZT
jiAji(H

−1
ji )T δ(r−rj), µ is the magnetic

permeability, δ is the Dirac’s delta-function and i = 1, . . . , NT . Here p =
(

1 0 0
0 1 0

)
is the projection

matrix, 2×2 matrices Aji, Zji are previously explained and the 2×2 Hji =

(
H

(1)
x H

(1)
y

H
(2)
x H

(2)
y

)

ji

is composed of

the magnetic fields calculated at the j-th MT site and at the i-th frequency. The key formula (3) practically
means that computational loads for calculating gradient ( ∂ϕ

∂σ1
, . . . , ∂ϕ

∂σN
)T are equivalent to those for the solution

of 2 × NT forward problems using Eq. (4) to find Ei and of 2 × NT adjoint problems using Eq. (5) to find ui

for all i = 1, . . . , NT . Straightforward calculation of the gradient would require solution of 2 × NT × (N + 1)
forward problems.
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The approach described is quite general. It is not limited to magnetotellurics only, but can be applied to a
variety of EM problems.

3. Model example
Let us demonstrate on a numerical example how MT inversion allows conductivity to be recovered. In Fig. 1

we present a model including a tilted 3 ohm-m dyke embedded into a 100 ohm-m half-space. The dyke is located
at depth 200 to 700 m and it consists of 5 shifted adjacent blocks of 200×800×100 m3 size each. Our modeling
domain comprises of Nx ×Ny ×Nz=16×24×8 rectangular prisms of 100×100×100m3 size that cover the dyke
and the some part of the surroundings. Notice that the volume lies at depths of 100–900 m.

The inversion domain coincides with the modeling domain. This means that N = 3072 conductivities σk

(k = 1, . . . , N) of the prisms need to be recovered. The x3d forward modeling code described in ([1, 2]) was used
as an engine for inversion to solve the forward and adjoint problems given in Eq. (4) and (5). It also was used
to calculate 2×2 matrices Dji of “observed” impedances at NT = 4 frequencies of 1000, 100, 10 and 1 Hz. The
impedances were computed at NS = 168 sites rj (j = 1, . . . , NS) coinciding with the nodes of a homogeneous
nx × ny=12×14 grid, where 100 m is the distance between adjacent nodes.

In addition, the number of the correction pairs ncp was chosen as 6, and the relative error εji of the impedance
was taken as 0.05. A 100 ohm-m uniform half-space was used as an initial guess. In Fig. 1 we also present the
convergence of the inversion along with a set of 3-D models recovered at various iterations. It should be
mentioned, however, that during inversion we did not use the stabilizer ϕs at all; the Lagrange multiplier λ was
assigned a zero value. Instead, we assigned the lower conductivity limits of Eq. (2) as lk = 0.005 (k = 1, . . . , N).
In other words, resistivities ρk = 1/σk of the cells were constrained from above by a value of 200 ohm-m. This
turned out to play a similar role to that of regularization. It should be noted also that without putting

Figure 1: Convergence of the inversion for a 3-D model of a 3 ohm-m dyke in a uniform 100 ohm-m half-space.
The left-upper panel presents the misfit and cpu time vs the iteration number. Other panels present images
of the initial guess, the true model, as well as the models obtained at various stages of inversion. Number of
iterations is given in upper-left corner of each panel.

constraints on lk the iteration method without a stabilizer (i. e., when λ = 0) stagnates, when the misfit ϕd
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drops to a value of 1.3 and it fails to produce a good conductivity image (not presented here).
4. Conclusion

In this paper we have developed a novel approach to 3-D MT inversion. The most essential part of our
derivation is that we developed and implemented the adjoint method to derive explicit expressions for the
calculation of the gradients of the misfit. Our development is quite general and is not limited to magnetotellurics
alone. It can be applied to a variety of EM problems, such as marine controlled-source EM etc. With a synthetic
MT example, we have obtained the first promising results of convergence of our solution. The method still needs
further development to become a user-end product of universal value to the EM community.

Further work will be concentrated on adapting various types of regularization techniques, and introducing the
static shift into the penalty function (1). It is also planned to apply our inversion scheme to an experimental
data set. However, previous examples from other 3-D MT inversion software developers (see [8, 10, 14, 17])
indicate that successful verification of the inversion technique even on a single practical dataset is a complex
task and may take some time.
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