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Abstract—We present a 2.5D inversion algorithm for the interpretation of electromagnetic data collected in
a cross-well configuration. Some inversion results from simulated data as well as from field measurements are
presented in order to show the efficiency and the robustness of the algorithm.

1. Introduction
Electromagnetic methods are essential tools for the appraisal of a reservoir because of their sensitivity to

the resistivity (conductivity) which is a function of the fluid saturation. One of the traditional electromagnetic
techniques for well logging is the induction single-well measurement. This technique is employed both as a
wireline technology and as a measurement while drilling to estimate near well-bore resistivity. This induction
logging measurement has a sensitivity of up to a few meters from the well and is a function of the separation
between the transmitter and receiver and frequency of operation.

To reach deeper into the reservoir, a cross-well electromagnetic induction technology was developed, see Wilt
et al., [6] and Spies and Habashy [4]. The system operates very similar to the single-well logging tool however
with transmitter and receiver deployed in separate wells. During a cross-well survey the receivers are lowered
into one well, initially to the bottom of the survey-depth interval. Then the transmitter is lowered into the
second well and is moved to log the entire survey-depth interval. During logging the transmitter broadcasts
electromagnetic signals at a number of pre-prescribed frequencies while at the receiver well these signals are
recorded. After the transmitter run is completed the receiver array is moved to the next depth station in the
survey interval and the process is then repeated until the entire depth interval has been covered. After the
data set has been collected, an inversion process is applied to convert the electromagnetic signals to a resistivity
distribution map of the region between the wells. Furthermore, since most of the survey involves only two wells,
one can usually assume in the inversion that the geometry is 2D (the resistivity distribution is invariant along
the direction perpendicular to the plane containing the wells).

This inverse process is one of the most challenging parts of the effort to make this cross-well technology
work since it requires one to solve a full nonlinear inverse scattering problem, which is usually ill-conditioned
and non-unique. Moreover, when the number of the model parameters to be inverted is large, the inversion can
be very time-consuming.

In order to carry out the inversion within a reasonable time, we employ a finite-difference code as a for-
ward simulator. In this forward code the configuration is numerically discretized using a small number of cells
determined by the optimal grid technique, see Ingerman et al. [3]. The resulting linear system of equations
representing the discretized forward problem has to be solved in each inversion step. To solve this system, we
use a LU decomposition method that allows us to obtain the solution for all transmitters simultaneously. Fur-
thermore, in order to be able to use the optimal grid without sacrificing accuracy we use an anisotropic material
averaging formula. All these features help in reducing the computational time for constructing sensitivity kernel
and for calculating the data misfit.

For the inversion method, we employ a constrained Gauss-Newton minimization scheme (see Habashy and
Abubakar [2]) where the inverted model parameters are forced to lie within their physical bounds by using a
nonlinear transformation procedure. We further enforce a reduction in the cost function after each iteration by
employing a line search method. To improve on the conditioning of the inversion problem, we use two different
regularizers. The first is a traditional L2-norm regularizer, which allows a smooth solution. The second is
the so-called weighted L2-norm regularizer, which can provide a sharp reconstructed image, see van den Berg
and Abubakar in [5]. The trade-off parameter which provides the relative weighting between the data and the
regularization part of the cost function is determined automatically to enhance the robustness of the method.
We will present results from simulated data as well as from field measurements to demonstrate the capabilities
of the developed algorithm.
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2. Methodology
We consider a general discrete nonlinear inverse problem described by the operator equation

d
obs

= S (m), (1)

where d
obs

= [dobs
1 dobs

2 . . . dobs
J ]T is the vector of measured data and S = [S1 S2 . . . SJ ]T is the vector of data

computed for the model parameters m = [m(xq, zr), q = 1, 2, . . . , Q; r = 1, 2, . . . , R], where xq and zr denote
the center of the 2D discretization cell. We use a lexicographical ordering of the unknowns to map the 2D array
indices to 1D column indices (q, r) → R× (q− 1) + r. The superscript T denotes the transpose of a vector. We
assume that there are J number of data points in the experiment and that the configuration can be described
by I = Q × R model parameters. In this cross-well electromagnetic problem the data are the component of
the magnetic field which is parallel to the borehole axis. The unknown model parameter m(r) = σ(r)/σ0 is
the normalized conductivity where σ0 is a constant conductivity. In the implementation σ0 is chosen to be the
average of the initial model used in the inversion.

We pose the inversion as the minimization problem. Hence at the nth iteration we reconstruct mn that
minimizes

Φn(m) = φd(m) + λnφm
n (m), (2)

where φd is a measure of data misfit:

φd(m) =

∑J
j=1

∣∣Wj,j [dobs
j − Sj(m)]

∣∣2
∑J

j=1

∣∣Wj,j dobs
j

∣∣2 , (3)

in which | · | denotes the absolute value and W is a diagonal matrix whose elements are the estimates of the
standard deviations of the noise. The symbol λ denotes the regularization parameter and φm is a measure of
the variation in the geometrical configuration:

φm
n (m) =

∫

D

dr b2
n(r)

{∣∣∇[m(r)−mref(r)]
∣∣2 + δ2

n

}
, (4)

where ∇ = [∂x ∂z]T denotes spatial differentiation with respect to r = [x z]T , and the weight b2
n(r) is given by

b2
n(r) =

1∫

D

dr
∣∣∇[mn(r)−mref(r)]

∣∣2 + δ2
n

(5)

for the L2-norm regularizer and
b2
n(r) =

1
V

1∣∣∇[mn(r)−mref(r)]
∣∣2 + δ2

n

(6)

for the weighted L2-norm regularizer introduced in van den Berg and Abubakar [5]. The symbol V =
∫

D

dr

denotes the volume of the computational domain and mref is the known reference model. Note that for the
L2-norm regularizer the weight b2

n(r) is independent of the spatial position r. The δ2
n is a constant which

is chosen to be equal to: δ2
n = φd(mn)/(∆x∆z), where ∆x and ∆z are the widths of the discretization cell.

The regularization parameter λ is determined automatically using the technique described in Habashy and
Abubakar [2].

To solve (2) we employ a Gauss-Newton minimization approach. At the nth iteration we obtain a set of linear
equations for the search vector pn that identifies the minimum of the approximated quadratic cost function,
namely,

Hn ·Pn = −gn, (7)

where
Hn = J

T

n ·W
T ·W · JT

n + λnL(mn), (8)

gn = J
T

n ·W
T · [dobs − S(mn)

]− λnL(mn) ·mn, (9)

in which
L(mn) ·mn = ∇ · [b2

n(r)∇mn(r)]. (10)
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In (8) and (9), Jn = J(mn) is the J × I Jacobian matrix and is given by the following expression:

Jj,i;n = η
∂Sj(mn)

∂mi;n
, η =

1∑J
k=1 |Wk,k dobs

k |2
. (11)

This Jacobian matrix is calculated using an adjoint formulation, which only needs an extra forward problem
solution at each Gauss-Newton search step. In this extra forward problem solution the roles of the transmitters
and receivers are interchanged. However since we are using a 2.5D forward code with a LU decomposition
solver, we need only one forward call to calculate both the data misfit and to generate the Jacobian matrix.
Note that the use of the direct solver is possible, since we reduced the number of grids outside the inter-well
region by employing the optimal grid technique in Ingerman et al. [3]. Furthermore, in order to be able to use
the optimal grids without scarifying accuracy we use an anisotropic homogenization technique.

Since the size of the Hessian matrix Hn is large, we solve the linear system of equations (7) using a linear
iterative method. To that end we first rewrite equation (7) as follows:

K · pn = f , (12)

where K = Hn and f = −gn. Since K is a self adjoint matrix, we employ a Conjugate Gradient Least Square
(CGLS) scheme to solve this linear system of equations. This CGLS scheme starts with the initial values:

r(0) = f−K · p(0)
n , ERR(0) =

||r(0)||
||f|| , (13)

where p(0)
n = pn−1. Next, we compute successively for N = 1, 2, . . . ,

A(N) = < r(N−1), K · r(N−1) >,

u(N) = r(N−1), N = 1,

= r(N−1) +
A(N)

A(N−1)
u(N−1), N > 1,

B(N) = ||K · u(N)||2,

p(N)
n = p(N−1)

n +
A(N)

B(N)
u(N),

r(N) = f−K · p(N)
n , ERR(N) =

||r(N)||
||f|| , (14)

where ||u|| = √
< u,u > denotes the L2-norm of a vector. This CGLS iteration process stops if the relative error

ERR(N) reaches a prescribed value, or when the total number of iterations N exceeds a prescribed maximum.
After the search vector pn = p(N)

n has been obtained, the unknown model parameters are updated as follows:

mn+1 = mn + νnpn, (15)

where νn is a scalar constant parameter to be determined by a line search algorithm. In the implementation
we always try first the full step, i.e., νn = 1, and check if it reduced the value of the cost function Φn. If not,
we backtrack along the Gauss-Newton step until we have an acceptable step. Since the Gauss-Newton step is
a descent direction for Φn, we are guaranteed to find an acceptable step. In this procedure νn is selected such
that:

Φn(mn + νnpn) ≤ Φn(mn) + ανnδΦn+1, (16)

where 0 < α < 1 is a fractional number, which is set to be quite small, i.e., α to 10−4, so that hardly more than
a decrease in cost function value is required (see Dennis and Schnabel [1]). The parameter δΦn+1 is the rate of
decrease of φ(m) at mn along the direction pn and is given by:

δΦn+1 =
∂

∂ν
Φn(mn + νpn)

∣∣∣∣
ν=0

= gT
n · pn. (17)
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If, at the (n+1)th iteration, ν
(m)
n is the current step-length that does not satisfy the condition (16), we compute

the next backtracking step-length, ν
(m+1)
n , by searching for the minimum of the cost function assuming a

quadratic approximation in ν. Hence ν
(m+1)
k for m = 0, 1, 2, . . . is given by:

ν(m+1)
n =

−0.5
[
ν

(m)
k

]2
δΦ(n+1)

Φn(mn + ν
(m)
n pn)− Φn(mn)− ν

(m)
n δΦn+1

. (18)

In general, it is not desirable to decrease ν
(m+1)
n too much since this may excessively slow down the iterative

process. To prevent this slow down, we set ν
(m+1)
n = 0.1ν

(m)
n if ν

(m+1)
n < 0.1ν

(m)
n (but with νn not to decrease

below 0.1, i.e., νmin = 0.1 to guard against a too small value of ν) and then proceed with the Gauss-Newton
step.

To impose a priori information of maximum and minimum bounds on the unknown parameters, we con-
strained them using a nonlinear transformation of the form:

mi =
mmax

i + mmin
i

2
+

mmax
i −mmin

i

2
sin(ci), (19)

where mmax
i and mmin

i are upper and lower bounds on the physical model parameter mi. It is clear that
mi → mmin

i , as sin(ci) → −1 and mi → mmax
i , as sin(ci) → +1. This nonlinear transformation will force

the reconstruction of the model parameters to lie always within their prescribed bounds. Formally by using
this nonlinear transformation we should be updating the auxiliary unknown parameters ci instead of the model
parameters mi. However by using the relation pi = qi dmi/dci where qi is the Gauss-Newton search step with
respect to ci, we obtain the following relationships between the two successive iterates mi,n+1 and mi,n of mi:

mi,n+1 =
mmax

i + mmin
i

2
+ αn sin

(
νnpi,n

αn

)
+

(
mi,n − mmax

i + mmin
i

2

)
cos

(
νnpi,n

αn

)
, (20)

where αn =
√

(mmax
i −mi,n)(mi,n −mmin

i ).
The iteration process will be terminated if one of the following conditions occurs: (1) The misfit φd(mn) is

within a prescribed tolerance factor; (2) The difference between the misfit at two successive iterates n is within
a prescribed tolerance factor; (3) the difference between the model parameters m at two successive iterates n is
within a prescribed tolerance factor; (4) The total number of iterations exceeds a prescribed maximum.

3. Numerical Example
As a test example we employ a model shown in Fig. 1(a). This model was originally used to study a

CO2 injection operation and is employed here as it includes smoothly varying dipping stratigraphy as well as
sharp boundaries and deviated wells. The background model shown in Fig. 1(b) is obtained using single-well
logs interpolated between the two wells. The hypothesized CO2 injection region is shown in red in Fig. 1(a).
The change between the true model and the background model is shown in Fig. 1(c) given in percentage
difference (%). The data are collected using 41 transmitters and 41 receivers. The locations of the transmitters
and receivers are denoted by ‘T’ and ‘R’ in Fig. 1. Thus we have 1681 complex-valued data points. After
generating the synthetic data, we corrupted the data with random white noise that corresponds to 2% of the
maximum amplitude of all data points. The inversion domain is from x = −30m to x = 350 m and z = 950 m
to z = 1250 m and is discretized into cells of dimensions 5 m by 5m, hence the total number of unknown model
parameters is 4636.

First we run our inversion algorithm using the L2-norm regularizer given in (4) and (5). As the initial
estimate we use the background model given in Fig. 1(b). Using this regularization term, the scheme took 15
iterations to converge. Figs. 1(d) and 1(e) show the percentage difference between the inverted resistivity and
the background resistivity. The image obtained using the L2-norm regularizer is shown in Fig. 1(d). The image
obtained in this case has the appearance of a spatially smoothed version of the model changes in Fig. 1(c). Next
we rerun our inversion code, however now we use the weighted L2-norm regularization term given in (4) and
(6). The inversion results after 19 iterations are shown in Fig. 1(e). By using the weighted L2-norm regularizer
we obtain a significant improvement in the reconstruction of the geometry and the amplitude of the change due
to the CO2 injection. Finally we note that one iteration of the scheme takes only 180 seconds on a PC with a
Pentium IV 3.04GHz processor.
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Figure 1: The resistivity distribution of the true model (a), of the initial model (b), the changes between (a)
and (b) given in percentage (c), the inverted resistivity plotted as the change with respect to the model in (b)
obtained using a L2-norm regularizer (d) and a weighted L2-norm regularizer (e).
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