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QN Inversion of Large-scale MT Data
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Abstract—A limited memory quasi-Newton (QN) method with simple bounds is applied to a 1-D magnetotel-
luric (MT) problem. The method is used to invert a realistic synthetic MT impedance dataset, calculated for
a layered earth model. An adjoint method is employed to calculate the gradients and to speed up the inverse
problem solution. In addition, it is shown that regularization stabilizes the QN inversion result. We demonstrate
that only a few correction pairs are enough to produce reasonable results. Comparison with inversion based on
known L-BFGS-B optimization algorithm shows similar convergence rates. The study presented is a first step
towards the solution of large-scale electromagnetic problems with a full 3-D conductivity structure of the Earth.

1. Introduction
Quasi-Newton (QN) methods have become a very popular tool for the numerical solution of electromagnetic

(EM) inverse problems (see [8, 7]). The reasoning behind it is that the method requires calculation of gradients
only, while at the same time avoiding calculations of second-derivative terms. However, even with the gradients
only, the QN methods may require excessively large computational time if the gradients are calculated straight-
forwardly. An effective way to calculate the gradients is delivered by an adjoint method (see [11, 4]). Also, for
large-scale inverse problems the limited memory QN methods have to be applied, since their requirements for
storage are not so excessive as for other QN methods. In this paper, as a first step to solving the 3-D EM case,
we have applied a limited memory QN method for constrained optimization to solve 1-D magnetotelluric (MT)
problems. This optimization method is an extension of previous work [9]. As distinct from this earlier work we
implement the Wolfe conditions to terminate the line search procedure, as was recommended in [3]. First we
present a simple review of the limited memory QN method for inversion of 1-D MT data. Then, we demonstrate
the efficiency of our inversion on a synthetic, but realistic numerical example, along with a comparison with
inversion based on the L-BFGS-B optimization method introduced by [3]. The results presented are encouraging
and suggest that the method has the potential to handle the more geophysically realistic 3-D inverse problem.

2. 1-D MT Inversion
In the frame of the magnetotelluric method both the electric and magnetic fields are recorded. These fields

are then processed to calculate the observed impedance dataset. This dataset is finally inverted to derive a
distribution of electrical conductivity in the earth.

Thus, for 1-D MT inversion a layered earth model is considered and conductivities of the layers are sought.
This problem is usually solved by minimization of the following objective function

ϕ(m, λ) = ϕd(m) + λϕs(m) −→
m

min, (1)

where ϕd(m) = 1
2

M∑
j=1

αj |Zj − dj |2 is the data misfit. Here m = (m1, ...,mN )T is the vector consisting of the

electrical conductivities of the layers; superscript T means transpose; N is the number of the layers; Zj(m)
and dj are the complex-valued modeled and observed impedances at the j-th period (j = 1, ..., M) respectively;
αj = 2

M ε−2
j |dj |−2 are the positive weights; εj is the relative error of the impedance Zj(m) and λ is a Lagrange

multiplier. Our choice of λ is a simple variant of an algorithm presented in [6]. As prescribed by the regularization
theory (see [12]), the function (1) has a regularized part (a stabilizer) ϕs(m). This stabilizer can be chosen
by many ways, and moreover, the correct choice of ϕs(m) is crucial for a reliable inversion. However, this
aspect of the problem is out of the scope of this paper. We consider the following stabilizer (see [5]) ϕs(m) =
N∑

i=2

(
mi

m0
i
− mi−1

m0
i−1

)2

, where m0 = (m0
1, ..., m

0
N )T is an initial guess model. It is of importance that, as the

conductivities mi (i = 1, . . . , N) must be non-negative and realistic, the optimization problem (1) is subject to
bounds

li ≤ mi ≤ ui, (2)
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where li and ui are the lower and upper bounds, respectively and li ≥ 0 (i = 1, . . . , N).
A limited memory quasi-Newton method. We notice that the problem posed in (1)– (2) is a typically

constrained optimization problem with simple bounds. To solve this problem Newton-type iterative methods
are commonly applied. However, most of these methods are not applicable to large-scale optimization problems
because the storage and computational requirements become excessive. To overcome this, a limited memory
quasi-Newton method has been developing (see [10] for a good introduction). Let us now describe our imple-
mentation of such a technique.

At each iteration step k the search direction, vector p(k), is calculated as p(k) = −G(k)g(k), where the
symmetric matrix G(k) is an approximation to the inverse Hessian matrix and g(k) is the gradient g =
( ∂ϕ

∂m1
, . . . , ∂ϕ

∂mN
)T calculated at m = m(k). An explicit expression for the matrix G(k) is given in [10, p. 225,

formula (9.5)]. It is important that the matrix G(k) is stored implicitly using ncp correction pairs {s(n),y(n)}
(n = k − ncp, . . . , k − 1) previously computed as s(n) = m(n+1) −m(n), y(n) = g(n+1) − g(n). The main idea
behind this approach is to use information from only the most recent iterations and the information from earlier
iterations is discarded in the interests of saving storage. In [10, p. 225] it is advocated that ncp between 3 and
20 may produce satisfactory results.
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Figure 1: Comparison of LMQNB inversions for 2, 5 and 20 correction pairs.

The next iterate m(k+1) is then found as m(k+1) = m(k) + α(k)p(k), where the step length α(k) is computed
by an inexact line search procedure. This procedure finds a step length that delivers an adequate decrease in the
objective function ϕ along the search direction p(k). Let us demonstrate how in our implementation we provide
the positive definiteness of the matrix G(k), required to guarantee the descent direction p(k). When the vectors
s(k−1) and y(k−1) satisfy the curvature condition s(k−1)T y(k−1) > 0, it can be shown that the matrix G(k) is
positive definite. This condition is guaranteed to hold if we use the Wolfe conditions (see [10]) to terminate the
line search. But the Wolfe conditions may not be reached inside the feasible region defined within the bounds
set by equation (2). In this case, we modify s(k−1) as prescribed in [9, p. 1513] to guarantee that matrix G(k)

is positive definite.
Alternative ways to deal with such boundary constrained QN optimization can be found in [3].
Speeding up the solution. As presented above, at each iteration step k the inverse problem solution

requires calculating the gradient g(k). However for large-scale problems (when N is large) a straightforward
calculation may be prohibitive in terms of computational time. One can significantly speed up the calculation
by using an adjoint method (see [11, 4]). We have applied such a method to the 1-D MT case. The derivatives

are numerically calculated as ∂ϕd

∂σi
= −Re

(
M∑

j=1

αjΓij

(
Zj − dj

)
Z2

j

)
, where i = 1, . . . , N , the sign Re means

the real part of its complex argument and all the coefficients Γij are found by solving a single adjoint forward
problem. Thus, our calculation of the gradient requires the solution of a single forward and adjoint problem.
This approach may be extended with some effort to the 3-D case. It is also noteworthy that for the 1-D MT
case the gradient can also be calculated using the chain-rule (see [5]).
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We have therefore implemented the limited memory QN method with simple bounds (hereinafter, referred
as LMQNB), which is described above. It should be noted here that our implementation differs from that of
[9], in that the LMQNB uses the Wolfe conditions to terminate the line search.

3. Model Examples
Let us study on a synthetic 1-D MT example the convergence rate of the LMQNB inversion for a various

number ncp of correction pairs. A 7-layered earth model (see Fig. 3) was compiled from the models (see [1])
derived from a seafloor MT and a global GDS long-period dataset collected in the North Pacific Ocean. To
complicate the inversion process we subdivided the three upper layers in this model (to depth of 394 km) into
197 equally thick sublayers (N = 197). For this 201-layered model we inverted the impedance dj = Zj(m)
calculated at M = 30 periods from 10 s to 10800 s.
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Figure 2: Comparison of inversions based on the LMQNB (1) and L-BFGS-B (2) optimisations with ncp = 5
and λ = 320.
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Figure 3: The conductivity models obtained from inversion based on the LMQNB optimization with ncp = 5
for λ = 0 and λ = 320. The true model is shown by the solid line and the initial guess by the dashed line.

In addition, we added 0.5% random noise to the impedance data. The relative error εj (see αj on page 1)
of the impedance was taken as 0.01. A 10 ohm-m uniform half-space was used as an initial guess m = m0. The
convergence rate curves are shown in Fig. 1 as a function of the total number (nfg) of function ϕ and gradient
g evaluations for λ = 320. It is surprising that so small a number of pairs (ncp = 5) can be chosen sufficiently
to get a relatively reasonable result.

Let us again consider the 201-layered model and the dataset, described in the previous example. In our
next example (see Fig. 2) we present a comparison of two solutions of a 1-D MT inverse problem. The first
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solution is based on the optimization method offered in this paper and the second one exploits the L-BFGS-B
optimization code from [3]. The comparison is presented for ncp = 5 correction pairs and for λ = 0 and λ = 320.
Both solutions converge in a similar way and also produce similar models. The inversion results are presented
in Fig. 3.

4. Conclusion
This paper described a limited memory QN method applied to solve a 1-D MT inverse problem. The method

is also valid for large-scale problems, and may be equally applied for 1-D, 2-D, or 3-D MT cases. In the numerical
examples presented we have demonstrated that a few correction pairs are enough to obtain reasonable inversion
results. To speed-up the inversion the adjoint method has been applied to calculate the gradients. The non-
trivial problem of such a calculation of gradients in the 3-D MT case is presented in a companion paper [2].
Another finding of our numerical experiments is that the LMQNB solution converges similarly to the solution
based on the L-BFGS-B method introduced in [3].
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