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Abstract—In this paper we present a nonlinear effective inversion method based on the Padé Via Lanczos
process (PVL process). The method finds so-called effective medium parameters of some inhomogeneous object
by minimizing an objective function which describes the discrepancy between the scattered field produced by an
inhomogeneous object and the scattered field produced by a homogeneous one. This minimization procedure can
be carried out by inspection, since the scattered field produced by homogeneous objects can be computed very
efficiently using the PVL process. The constant medium parameters of the homogeneous object for which the
objective function is minimum are the effective medium parameters we are looking for. A number of numerical
experiments are presented in which we illustrate the performance of the method.

1. Introduction
We consider a two-dimensional configuration that is invariant in the z-direction. The position vector in

the transverse xy-plane is denoted by x. An object, with known support Sobj, is located in vacuum and is
characterized by a conductivity σ(x) and a permittivity ε(x). The object is illuminated by E-polarized waves
which are generated by a line source of the form

Jext
z (x, ω) = f(ω)δ(x− xsrc), (1)

where f(ω) is the source signature, and the delta function on the right-hand side is the Dirac distribution
operative at x = xsrc. The source is located outside the object (xsrc /∈ Sobj), and the incident electric field
strength generated by the line source is given by

Einc
z (x, ω) = γsH

(1)
0 (k0|x− xsrc|), (2)

where H
(1)
0 is the zero-order Hankel function of the first kind, γs = iωµ0f(ω)/4, and k0 is the wave number of

vacuum.
The total electric field strength is measured at some receiver location xrec ∈ Sobj and since the incident

electric field is known, the scattered electric field strength at the receiver location is known as well. We denote
this scattered field by Esc

z . In what follows we assume that this field does not vanish at the receiver location.
The full inversion problem consists of retrieving the conductivity σ(x) and permittivity ε(x) of the object

from the measured electric field strength. In our effective inversion method, however, we follow a different
approach. We act as if the object is homogeneous and try to find position-independent medium parameters for
which the scattered field at the receiver location matches the true scattered field using a well-defined objective
function.

Let us be more precise. Introducing the contrast coefficient of the homogeneous object as

ζ(ω) = ε̃r − 1 + i
σ̃

ωε0
(3)

where ε̃ and σ̃ are position-independent, we have for the scattered field at the receiver location the integral
representation

Ẽsc
z (xrec, ω) =

ik2
0

4
ζ(ω)

∫

x′∈Sobj
H

(1)
0 (k0|xrec − x′|)Ẽz(x′, ω)dA. (4)

This so-called data equation relates the scattered field at the receiver location to the contrast coefficient and
the total electric field inside the object. This total field is unknown, but we do know that it satisfies the object
equation

Ẽz(x, ω)− ik2
0

4
ζ(ω)

∫

x′∈Sobj
H

(1)
0 (k0|x− x′|)Ẽz(x′, ω)dA = Einc

z (x, ω) with x ∈ Sobj (5)
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This object equation is an integral equation of the second kind for the total electric field strength Ẽz for a given
value of the contrast coefficient.

Discretizing the object and data equation on a uniform grid using square discretization cells with side lengths
δ is standard and we do not discuss it in this paper. We only give the final forms of the discretized data and
object equations, and refer to [1] for details on the discretization process.

After the spatial discretization procedure we obtain the discretized data equation

usc(ζ) = γrζrT u, (6)

where γr = i(k0δ)2/4, r is a receiver vector, and u is a vector containing the expansion coefficients of the total
electric field inside the object. Furthermore, the discretized object equation for the homogeneous object is given
by

(I − ζG)u = uinc (7)

where I is the identity matrix, and matrix G is a square and symmetric (but not a Hermitean) matrix with
(scaled) Green’s function values as its entries. Since matrix G results from a discretization of a convolution
operator on a uniform grid, we can compute its action on a vector very efficiently using the Fast Fourier
Transform (FFT). Finally, the vector uinc is a vector consisting of incident electric field strength values. This
vector can be written in the form uinc = γss where s is such that s = r if the source and receiver locations
coincide. Using the latter form for the incident field vector in the discretized object equation, solving this
equation for the total field u, and substituting the result in the discretized data equation, we arrive at

usc(ζ) = γζrT (I − ζG)−1s, (8)

with γ = γrγs. If we compute the scattered field usc equation (8) directly, we have to solve a forward problem
for each new value of ζ. Such a procedure can be computationally intensive and it turns out that it can be
avoided using the Padé Via Lanczos (PVL) process. We briefly describe this process in the next section.

2. The Padé via Lanczos Process
We first define our domain of interest. Let ε̃r;max and σ̃max be a priori given upper bounds for the constant

medium parameters. Then our domain of interest is defined as

T = {ζ ∈ C; 0 ≤ Re(ζ) ≤ ε̃r;max − 1, 0 ≤ Im(ζ) ≤ σ̃max/(ωε0)},

since we require that ε̃r ≥ 1 and σ̃ ≥ 0. We now compute [k − 1/k]-Padé approximations for the scattered
field usc around an expansion point ζ0 ∈ T by performing k iterations of the two-sided Lanczos algorithm
(see [2]). Matrix factorization is required for any nonzero expansion point and computing such a factorization is
expensive (although it has to be computed only once). However, no such factorization is needed if we take ζ0 = 0
as an expansion point. Only matrix-vector products with matrix G are required in this case and, as we have
mentioned above, such products can be computed efficiently using FFT. We therefore construct [k− 1/k]-Padé
approximations for the scattered field usc around the expansion point ζ0 = 0 by performing k iterations of the
two-sided Lanczos algorithm using the source and receiver vectors s and r as starting vectors. We denote the
resulting Padé approximation by usc

k . The crux of the matter is that to evaluate this approximation for each
ζ ∈ T, we need to solve a k-by-k tridiagonal system and k is typically much smaller than the order of the original
discretized object equation. Assuming now that k is such that essentially

usc
k (ζ) = usc(ζ) for all ζ ∈ T,

we can conclude that we have an efficient way of evaluating the scattered field for all ζ-values of interest.

3. The Effective Medium Parameters
The effective medium parameters follow from minimizing an objective function defined over the domain of

interest. More precisely, the effective medium parameters are defined as those parameters for which the objective
function

F1(ζ) =
|Esc

z − usc
k |2

|Esc
z |2

(9)

attains a minimum in our domain of interest T. If multiple frequency data Esc
z (ω1), Esc

z (ω2), · · · , Esc
z (ωN ) is
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Figure 1: Two-dimensional test configuration.

available, we look for those medium parameters for which the multiple frequency objective function

FN (ζ) =
N∑

n=1

ωn
|Esc

z (ωn)− usc
k (ωn)|2

|Esc
z (ωn)|2 (10)

is minimum. In the above equation, the weights ωn satisfy
∑N

n=1 ωn = 1. Notice that in the multiple frequency
case we have to apply the PVL process for each frequency separately. Moreover, for multiple frequencies the
domain of interest on which all the PVL approximations match the true scattered field due to a homogeneous
object is taken to be the domain T which corresponds to the lowest frequency of operation. Minimizing the
objective functions can be carried out by inspection since we have a very efficient way of computing the scattered
fields usc

k (ωn). Finally, we mention that we cannot guarantee that the effective medium parameters are unique.
The objective function may have multiple minima on the domain of interest and each minimum gives a set
of effective medium parameters for the object. However, usually we can overcome the nonuniqueness of the
effective medium parameters by including more a priori information, or by performing additional experiments
at different frequencies while keeping the source/receiver unit fixed.

4. Numerical Results
We illustrate our effective inversion approach using the two-dimensional configuration shown in Figure 1. A

square block with side lengths ` is located in a vacuum domain. The block has an inner and an outer part and
each part has its own constant medium parameters. Specifically, the outer part has a conductivity σ1 and a
relative permittivity εr;1, the inner part a conductivity σ2 and a relative permittivity εr;2. Obviously, the block
is homogeneous if σ1=σ2 and εr;1 = εr;2. Finally, the source/receiver unit is located a distance `/2 above the
object and the source and the receiver are located 2 cm apart.

In our first example, we operate at a frequency of 36 MHz, and take ` = λ36, where λ36 is the free-space
wavelength corresponding to the operating frequency of 36 MHz. The block is homogeneous with σ1 = σ2 =
7.5mS/m and εr;1 = εr;2 = 5. For the maximum conductivity and maximum relative permittivity we take
σ̃max = 10mS/m and ε̃r;max = 6, respectively. The domain of interest is discrerized on a 50-by-50 grid (leading
to 2500 forward problems solved by PVL in less than a second on a notebook with a 1.6GHz Pentium M
processor) and the objective function F1 on this domain of interest is shown in Figure 2 (left). We observe that
the true conductivity and permittivity of the object are recovered. However, a number of additional minima
are present near the ε̃r-axis. To remove these minima we add two more frequency measurements, namely, one
at a frequency of f = 30 MHz and one at f = 42MHz. The objective function F3 for these two frequencies and
the frequency of 36 MHz is shown in Figure 2 (right), where we have taken ωn = 1/3 for n = 1, 2, 3. Clearly,
the multiple minima have disappeared and a single minimum remains. In addition to using multiple frequency
data, we could also change the source and receiver locations. This latter option is not considered in this paper,
however.

We now apply our effective inversion method to inhomogeneous blocks. Two blocks of different sizes will be
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Figure 2: Base 10 logarithm of F1 (left) and base 10 logarithm of F3 (right) on the domain of interest.
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Figure 3: Base 10 logarithm of F3 for the λ36/4-block (left) and the λ36-block (right).

considered. The first block has a side length ` = λ36/4 and the second one a side length of ` = λ36. The outer
part of the two blocks has a conductivity σ1 = 3.0mS/m and a relative permittivity εr;1 = 3, while the medium
parameters of the inner part are σ2 = 5.0mS/m and εr;2 = 5. For both blocks the area of the inner part is
50% of the total area of the block. Using the same three frequencies as in the previous examples, we obtain
the objective functions as shown in Figure 3. The minimum for the λ36/4-block is located at an acceptable
location in the domain of interest, but for the large block the effective medium parameters are smaller than the
smallest medium parameters of the block. This result is unexpected. We therefore carried out an additional
number of experiments and all these experiments indicate that for inhomogeneous objects it all depends on the
size of the object and the sizes of the perturbations with respect to a constant contrast function. This latter
function may be large, but the perturbations cannot be “too large”. Finding a condition that tells us for which
contrast perturbations the proposed method gives reliable results is a topic we are presently investigating. In
addition, we want to know how this condition changes if the data is perturbed (by noise, for example) given the
magnitude of the data perturbations.

Acknowledgment
The research reported in this paper was supported by a grant of the Netherlands Organization for Scientic

Research (NWO).

REFERENCES

1. Richmond, J. H., “Scattering by a dielectric cylinder of arbitrary cross section shape,” IEEE Trans. An-
tennas Propagat., Vol. 13, 334–341, 1965.

2. Feldmann, P. and R. W. Freund, “Efficient linear circuit analysis by Padé approximation via the Lanczos
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