Optimal Grids for the Forward and Inverse Electric Impedance Tomography Problems

F. Guevara Vasquez and L. Borcea Rice University, USA

V. Druskin

Schlumberger-Doll Research, USA

In Electrical Impedance Tomography (EIT) one seeks to find the conductivity inside a body rom electrical measurements at its surface. This is an ill-posed inverse problem and finding appropriate parametrizations of the unknown is a crucial question.

We begin by reviewing optimal grid results for an 1D inverse problem [1], that gives a rigorous way of choosing an appropriate parameterization of the conductivity. The main idea is to fit the measurements exactly with a resistor network, and to interpret the resistors as local averages of the conductivity over the grid cells of a finite differences discretization. Next, we show how we can profit from a linearization of the resistors to improve over the performance of optimal grids in the 1D EIT forward problem.

Lastly, we discuss a generalization of the 1D methods to the 2D EIT inverse and forward problems, and show numerical results.

REFERENCES

1. Borcea, L., V. Druskin, and L. Knizhnerman., "On the continuum limit of a discrete inverse spectral problem on optimal finite-difference grids," *Comm. Pure Appl. Math*, Vol. LVIII, 1231–1279, 2005.