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Abstract—Interactive technique that measures geometric parameters of buried cylinders in a homogeneous
medium with unknown velocity of signal propagation is developed. After 3D GPR data processing, the velocity
of signal propagation is estimated; radius, length and position of the cylinder are measured. Experimental data
obtained by GPR “Defectoscope” are given.

1. Introduction
In paper [1] the hyperbola-fitting technique of radius estimation for subsurface cylindrical objects is pre-

sented. For that a direct least-square method for fitting hyperbola is used. Authors of paper [1] supposed that
the propagation velocity is known or it can be estimated beforehand via finding a hyperbola resulting from
a point reflector within the radarogram. In paper [2] they solved the questions of improving the accuracy of
the interpretation of the radar returns reflected from buried cylinders by taking into account the influence of
cylinder’s orientation and electromagnetic radiation pattern of the antennas.

In [3] two-dimensional data obtained from orthogonal sounding of cylinders are analyzed. It is shown that
the generalized Hough method can be used to measure buried pipe diameters from radar measurements and the
velocity determination is best made independently from a point-like source at similar depth.

In this paper the interactive technique of 3D-data processing which allows us to estimate simultaneously
signal propagation velocity in the medium and cylindrical objects parameters (orientation, radius, length and
depth of occurrence) is proposed. Operator participation in data processing allows one to smooth reflected
signals registration errors.

The technique is based on the frontal method of GPR 3D-data interpretation [4]. This method selects from
the whole bulk of GPR data the first arrival of wave fronts from the recorded signals reflected from objects.
These selected surfaces will be referred to as frontal hodographs.

This paper is development of the work in [5].

2. Measurement Technique
The technique proposed was developed during the creation of GPR data processing software of GPR “De-

fectoscope”, designed for inspection of buildings [6]. The scan zone of this GPR is a rectangular area in the XY
plane, and Z axis is directed to the probed medium. We will call the geometrical space with coordinate system
XY Z as object space. During the results registration at any scanning point the value of reflected signal is fixed
at discrete time moments at time axis T . This data array we will call the signal space or data cube. In the
signal space by means of software tools, it is possible to select the surfaces of frontal hodographs as a function
of time delay τ from antenna system coordinates (X, Y ).

In Fig. 1, a cylinder with arbitrary orientation with respect to scanning plane is shown. Denote cylinder
radius as r. Angle of inclination with respect to scanning plane XY of cylinder axis is denoted as ϕ; its
projection to the plane XY intercepts X axis at angle θ. Let us carry out a parallel shift of axes X and Y into
an arbitrary point O belonging to the cylinder axis projection into scanning plane. In Fig. 1 such shift has been
made. Cylinder axis intersects the scanning plane at a point with coordinates (CX,CY ). The distance between
point O and cylinder axis are denoted as h0. This distance equals the length of the perpendicular drawn from
this point to the cylinder axis.

Let us consider this perpendicular as vector ~h={X0, Y0, Z0}, where (X0, Y0, Z0) are Cartesian coordinates
of the perpendicular base, they are:

X0 = −h0 sin ϕ cos θ, Y0 = −h0 sin ϕ sin θ, Z0 = h0 cosϕ .

Let us introduce the unit vector ~eC={l0,m0, n0} directed from the considered perpendicular base along the
cylinder axis in increasing depth. Coordinates of this vector are:

l0 = cos ϕ cos θ, m0 = cos ϕ sin θ, n0 = sin ϕ .
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Figure 1: Geometry of data acquisition above an arbitrary located cylinder.

Then distance p(X, Y ) from arbitrary point (X,Y ) of scanning plane to cylinder axis equals:

p(X,Y ) =

∣∣∣
[
~q − ~h,~eC

]∣∣∣
|~eC |

where ~q={X, Y, 0}, – radius-vector of the point (X, Y ),
[
~q − ~h,~eC

]
−vector product of vectors ~q − ~h= {X −

X0, Y − Y0,−Z0} and ⇀
eC , modulus means the length of the vector, i.e.,

∣∣∣~h
∣∣∣ = h0.

Hence

p2(X,Y ) = [(Y − Y0)n0 + m0z0]2 + [(X −X0)n0 + l0z0]2 + [(X −X0)m0 − (Y − Y0)l0]2.
Substituting appropriate coordinates and simplifying, we obtain:

p2(X,Y ) = (X sin ϕ + h0 cos θ)2 + (Y sin ϕ + h0 sin θ)2 + cos2 ϕ(X sin θ − Y cos θ)2

Point (X,Y ) belongs to the arc of ellipse with major semiaxis a and minor semiaxis b (see Fig. 1), where

a = p(X,Y )/ sin ϕ and b = p(X, Y).

This ellipse is very interesting. Coordinates of ellipse center are (CX, CY ). The minor semiaxis b equals
the distance from any point of ellipse to cylinder axis. The major semiaxis a is the cylinder axis projection into
scanning plane. Therefore it defines angle θ. Ratio b/a = sinϕ shows the angle inclination of cylinder axis to
scanning plane.

The shortest distance R(X, Y ) from arbitrary point with coordinates (X,Y ) at scanning plane to the cylinder
surface can be derived as:

R(X, Y ) =
√

(X sinϕ + h0 cos θ)2 + (Y sin ϕ + h0 sin θ)2 + cos2 ϕ(X sin θ − Y cos θ)2 − r. (1)

Let us choose a measuring coordinate system SOU in the scanning plane which is formed by rotation of axes
OX and OY by angle θ. Then OS axis will coincide with the projection of cylinder axis into the scanning plane
and OU axis will be orthogonal to it. The third axis of the measuring coordinate system OW we will choose as
a continuation of the perpendicular from the point O to the cylinder axis.

Then coordinates X and Y are related with measuring coordinates S and U as:

X = S cos θ − U sin θ and Y = S sin θ + U cos θ. (2)
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Section of cylinder by the UW plane is a circle with radius r and center, whose distance from point O equals
h0. For monostatic system frontal hodograph or reflections from this circle for movement along OU axis one

can obtain substituting (2) into (1) with conditions S = 0 and R =
V τ

2
:

V τ

2
=

√
h2

0 + U2 − r.

Let us analyze this hyperbolic hodograph. We fix the time delay T0 of observed hyperbola vertex at point
O and delays T1 and T2 for arbitrary coordinates U1 and U2 at axis U . According to the measurement results
one can obtain equations set:

V T0

2
= h0 − r;

V T1

2
=

√
h2

0 + U2
1 − r;

V T2

2
=

√
h2

0 + U2
2 − r.

The solution is:

V =
2√

T2 − T1

√
U2

2

T2 − T0
− U2

1

T1 − T0
; (3)

h0 =
1

2
√

T2 − T1

U2
1 (T2 − T0)2 − U2

2 (T1 − T0)√
U2

2 (T1 − T0)2(T2 − T0)− U2
1 (T2 − T0)2(T1 − T0)

; (4)

r = h0 − V T0

2
. (5)

It should be noted that V and h0 do not depend on T0 but depend on differences (T1 − T0) and (T2 − T0).
It means that signal propagation velocity and the depth of the cylinder axis could be defined unambiguously on
hyperbola form independently the hyperbola position at time axis.

However, it is impossible to use (3)–(5) due to the coordinates registration errors and errors of the operator
carrying out this measurements. Even little errors could lead to significant deviations of calculated V and h0 from
true values. This is a typical incorrect problem, it is advisable to solve this problem by frontal hodograph τ(U)
adjustment by means of graphical tools with the best approximation of the observed data. Similar procedures
are widely used in GPR for the measurement of the signal propagation velocity on reflections from point-like
objects.

Approximating hyperbola form selection can be organized by software tools via adjustment of measurable
parameters V, h and r according to the equations:

for monostatic system

τ(U, h0, r, V ) = 2

√
U2 + h2

0 − r

V
; (6)

for bistatic system with base 2d (which is parallel to X axis):

τ(U, h0, r, V ) =
1
V

(
√

R2 + d2 + 2Rd cosψ +
√

R2 + d2 − 2Rd cos ψ), (7)

where h0 =
V T0

2
+ r; R =

√
U2 + h2

0 − r ; cos ψ =
U sin θ√
U2 + h2

0

.

Similar analysis of signal space SOT section shows that in this section frontal hodograph represents segment
of the cylinder high generatrix. The slope of this segment equals the value of ϕ angle. Denote time delays
at beginning and the end of the approximating segment as TH and TK respectively, and the distance between
points of measurements at OS axis as D, then ϕ can be calculated as follows:

ϕ = atctg

(
V (TK − TH)

2D

)
.

The cylinder length is L = D cos ϕ.
The technique developed was realized as a software module of GPR “Defectoscope” [6]. This software

was approved experimentally by sounding three parallel cylindrical objects placed into a box filled with sand.
Cylinders radii were 2 cm, 0.5 cm and 4 cm. Fig. 2 shows the geometrical position of these cylinders for two
soundings.

Figure 3 shows data processing results obtained from these soundings. Frame 3a shows GPR data when
cylinders ware located at angle θ = 60◦ to X axis and angle of ϕ = 0◦ to the scanning plane. Frame 3b
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Figure 2: Cylindrical objects position in testing soundings.
(a—horizontal cylinders θ = 60◦ and ϕ = 0◦, b—inclined cylinders θ = 60◦ and ϕ = 30◦).

shows GPR data when θ = 60◦ and ϕ = 30◦. Every frame shows control panel of the dialog window and
four fragments. Two uppers fragments (1 and 2) show two vertical mutually perpendicular to each other time
sections of GPR data cube. Down left fragment (3) shows a horizontal projection of data cube section which is
cut in accordance with angles θ and ϕ. Fragment 4 is horizontal projection of data cube with signals exceeded
the threshold specified by the operator.

Figure 3: Measurement results of unknown parameters of medium and cylinders using GPR data. (a—horizontal
cylinders θ = 60◦ and ϕ = 0◦, b—inclined cylinders θ = 60◦ and ϕ = 30◦, 1—vertical data cube section along
S axes shown in section 3 black line, 2—vertical data cube section along U axes shown in section 3 white line,
3—section which is parallel axis of cylinder, 4—horizontal projection of data cube which show signals exceeded
the threshold specified by the operator).

Consider the sequence of measurements the result of which is shown in Figs. 3(a) and 3(b). Using reflections
from a cylinder it is necessary to fix a point of measurements above the axis of a cylinder (see intersection of
black and white lines on fragments 3 and 4). Furthermore, an interpreter chooses the direction along the axis of
cylinder using reflections in horizontal section (see black line on fragment 3) and measures an angle θ. Next, an
interpreter measures of signal propagation velocity V and radius of a cylinder r by means of fitting a hyperbolic
curve by interactive varying of these parameters (see fragment 2). In the end the interpreter fixes inclined line
by changing ϕ value to obtain parallel bounds of reflections of the cylinder high generatrix (see fragment 1).
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All data entered by the interpreter are displayed in group of operating elements “Cylinder”. Meaning of
these elements is given in the following list:

Tt—depth of top of an approximating hyperbole measured in time samples;
Width—number of the samples in the approximating hyperbole of a fragment 2;
Theta—value of a corner θ measured in degrees;
V—propagation speed for of signals measured in millimeters/nanoseconds;
h—depth of cylinder measured on a normal in centimeters;
r—estimation of radius of the cylinder in centimeters;
Phi—value of a corner ϕ measured in degrees;
Oblique plane—the tag, which passive condition is used at measurements of parameters of horizontal cylin-
ders, and an active condition—at a choice of an inclined secant of a plane in parallel an axis of the cylinder;
Measurement zone—a tag at which installation on a fragment 1 there are vertical borders of the measured
length of the cylinder;
St—position of the left border of the cylinder measured in samples of scanning zone;
End—position of the right border of the cylinder measured in samples of scanning zone.
Measured parameters such as coordinates of the measurement point, the propagation velocity and also

parameters of a cylindrical object such as radius, length and location are shown in status bar (Fig. 3). Value
PSI shows direction of vector h. It equals PSI = π/2− ϕ.

Inaccuracy of measurements of unknown parameters depends on next factors: the time discretization, the
discrete location of antenna, the size of a object, insufficiently stretched “tails” of hyperbolic reflections restricted
by directional diagram, GPR resolution, the small amplitude of reflections and the level of suppression of useful
signals by reflections from other objects.

3. Conclusion
An interactive measurement technique developed in this paper allows the use of 3D GPR data which are

reflections from a buried cylinder to define the signal propagation velocity in a medium and parameters of a
cylindrical object such as radius, length, depth, azimuth angle and angle of inclination can be found.

Parameters which are found can be use both for direct interpretation of observed objects and for automatic
shaping of reflecting surfaces of all objects detected in the scan area using the method in [4].
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