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Applying Oblique Coordinates in the Method of Lines
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Abstract—Oblique coordinates are introduced into the method of lines. For the purpose of analysis, suitable
equations are derived. The formulas are applied to compute the transmission in a waveguide device consisting
of straight waveguides connected by a tilted one. Furthermore, the band structure of a hexagonal photonic
bandgap structure was computed using these oblique coordinates.

1. Introduction
The Method of Lines (MoL) [1] has been proven as an efficient tool for modeling waveguide structures in

the microwave area and in optics. Depending on the structure under study various coordinate systems like
Cartesian or cylindrical ones have been introduced, the latter allowing to examine e. g., VCSEL-structures or
curved waveguides [2–5]. Formulas for arbitrary rectangular coordinates can be found in [6].

By introducing Floquet’s theorem into the MoL [7, 8] photonic crystal structures (PCs) with a square lattice
could examined [9, 8]. Due to the shape of these structures Cartesian coordinates were applied.

In contrast, the shape of the elementary cells in hexagonal structures is not rectangular. Motivated by
papers found in the literature (e. g., [10–12]) an algorithm was developed that uses oblique coordinates. In the
references given above algorithms for the TE-polarization (2D) were described. Here we will derive expressions
for the full 3D-vectorial case from which the two-dimensional case can be easily derived.

The formulas were used to compute the propagation characteristic in a waveguide device, where two straight
waveguides were connected with a tilted one. The results were compared with those obtained by a staircase ap-
proximation showing a very good agreement. As second application the band-structure of PCs with a hexagonal
lattice was computed.

2. Theory
In this section we are going to derive the equations that can be used for analyzing devices with oblique

coordinates. We will start with Maxwell’s equations from which we determine the equations for the full vectorial
case. Simpler formulas (i.e., for two-dimensional structures) are then derived from these expressions.

Consider the coordinate system shown in Fig. 1, which shows Cartesian coordinates and oblique ones. The
relation between oblique coordinates (u, v, y) and Cartesian ones (x, y, z) is given as:

x = u sin(θ) + v (1)
z = u cos(θ) (2)
y = y (3)
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Figure 1: Tilted waveguide structure in an oblique coordinate system, and relation between the field components.

The y-coordinate is identical in both systems. Therefore, in the following, we will examine only the remaining
ones. Next, we need the derivatives with respect to the u- and v-coordinate. By inverting the relations in (1)



310 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29

and (2) and applying the chain rule, we obtain:
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At interfaces between two waveguide sections the transverse components have to be continuous. These are the
x- and the y-component in Cartesian coordinates. A closer look at Fig. 1 shows that the x-component is put
together of the u- and v-component if oblique components are used. However, also in an oblique coordinate
system we find that the x-component itself is continuous. Therefore, we will use the Cartesian components (i.e.,
x- and y-component) of the fields in oblique coordinates as well.

To derive suitable equations for these components, we start with Maxwell’s equations:

∇× ~H = jεr
~E ∇× ~E = −jµr

~̃
H (6)

where the coordinates have been normalized with the free-space wavenumber k0, (e. g., y = k0y). Furthermore,

the magnetic field was normalized with the free space wave impedance η0 = 120π Ω: ~̃
H = η0

~H. Now, the
derivatives with respect to x and z are replaced by those with respect to u and v and the z-component of the
electric and magnetic field is substituted by the x- and y-components. This leads to the following first order
differential equation system:
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To solve this equation, we proceed as usual in the method of lines. We divide the structure under study in
sections where the permittivity and the permeability (the latter usually being equal to one) depend only on the
transverse coordinates (v, y). Then, the derivatives with respect to v and y are discretized with finite differences.
This results in a system of coupled ordinary differential equations:

∂

∂u
F + Q F = 0 (8)

where the operator Q had been multiplied with cos(θ): cos(θ)Q = Q. By transformation to the principle axes
we can decouple this system

Q = TΓT−1 F = T F

with the solution
F(u) = exp(−Γu) F(0) (9)
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The eigenvectors of Q give the electric and magnetic field distribution of the eigenmodes and the eigenvalues Γ
are the corresponding propagation constants. Since we are dealing with a first order differential equation system
here, the forward and the backward propagating modes are determined at the same time. Therefore, we can
divide the eigenvalues/eigenvectors according to

Γ = diag(Γf ,−Γb) with Re(Γf ,Γb) > 0 and T =
[

T Ef T Eb

T Hf T Hb

]

Now, the next steps of analyzing complex circuits with the MoL are analogous to those in Cartesian coordinates.
Therefore, we give just a short summary here. After having found the solution in the homogeneous sections,
we have to consider the continuity at the interfaces. Together with boundary conditions at the input and the
output of the device, we could e. g., derive transfer matrix formulas for the whole structure. However, these
transfer matrix expressions are potentially unstable, because of the exponentially increasing terms. Therefore,
we use scattering parameters or alternatively impedances/admittances. In both of these cases, we start at the
output of our structure. When using scattering parameters we define a reflection coefficient as the ratio between
the backward and the forward propagation modes:

Fb = r Ff

This reflection coefficient is transformed to the input of the device. We have to consider homogeneous sections
and the interfaces between these sections. In a homogeneous section with the length d, we obtain for the
transformation formula:

r(0) = exp(−Γbd) r(d) exp(−Γfd) (10)

In contrast to the analysis with Cartesian coordinates we multiply with different expressions from the left and
from the right. For transforming the reflection coefficient at interfaces we can use expressions that were given
in [13] for anisotropic material. Therefore, we do not repeat them here. After the input reflection coefficient
has been determined, we compute the fields in opposite direction — from the input towards the output. In
this way the explicit computation of the exponentially increasing terms can be avoided. The procedure with
impedances/admittances is similar.
2.1. Two-dimensional Structures

The derivatives with respect to y are zero in case of two-dimensional structures. Therefore, the polarizations
decouple like in the Cartesian case, and we obtain the following operators for the TE- and the TM-polarization:
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Instead of working with a coupled differential equation system for the electric and the magnetic field we
could also derive a “wave equation” for one field component only. In case of the TE-polarization we obtain e. g.,
the following expression for Ey:

[
∂2

∂u2 + sin(θ)
(

∂

∂v
+ µr

∂

∂v

1
µr

)
∂

∂u
+ cos2(θ)µrεr + µr

∂

∂v

1
µr

∂

∂v

]
Ey = 0 (11)

However, to solve this equation with the MoL, we have to transform it back into a first order differential equation
system. Another point should be mentioned: analytically, the wave equation (11) and the coupled equation (7)
can be transformed into each other (if we introduce the expression for QTE) and are therefore equivalent. On
the other hand, a slight difference occurs in discretized form, because of the first order derivatives with respect
to v. We will compare those two cases to see the influence on the results.
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3. Numerical Results
As first example, we examined the concatenation of a tilted waveguide with a straight input and output

waveguide. (see Fig. 2(a)). The diagonal length L was kept constant.
The transmission as function of the angle is shown in Fig. 2(b). Also shown are results that were obtained

by a step approximation of the tilted section. To obtain convergent results at least 25 steps were required for
L = 20 µm with the staircase approximation. In case of L = 5 µm this number dropped to 5. When using
oblique coordinates the tilted part was examined in one step independent of the length of this section.

Also the two expressions for the oblique coordinates were compared. As can be seen all curves agree
very well, the results obtained with the different formulation obained with oblique coordinates are practically
indistinguishable.
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Figure 2: a) Concatenation of two straight waveguides with a tilted one; data n1 = 3.17, n2 = 3.24, w = 0.8 µm,
wavelength λ = 1.55 µm, b) transmission of the fundamental mode.

Next we used oblique coordinates to determine the band structure of photonic crystals with a hexagonal
lattice. The structure is shown in Fig. 3. It was taken from [14]. The Floquet modes which must be computed
for this band structure were determined with the algorithm presented in [15].
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Figure 3: Elementary cell of a hexagonal photonic bandgap structure taken from [14]; data: r/a = 0.3, ε1 =
11.56, ε2 = 1.

The determined band-structure for the Γ-M band is presented in Fig. 4. Also shown are the values at the
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special points Γ and M taken from that reference. A good agreement for the TM-polarization is recognizable,
the MoL-curves are slightly higher for the TE-polarization.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Φ / π

a
  

/ 
w

a
v
e

le
n

g
th

MoL               
Villeneuve et. al 

Γ M 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Φ / π

a
 /
 w

a
v
e
le

n
g
th

Γ M 

MoL               
Villeneuve et. al 

(b)

Figure 4: Band structure of a hexagonal lattice a) TM-polarization, b) TE-Polarization.
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