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Abstract—For studying the problem of scattering from a random medium layer with rough boundaries the
radiative transfer (RT) approach is widely used. In order to better understand this procedure we compared
it with the statistical wave approach. Two such wave approaches are presented in this paper: the surface
scattering operator (SSO) approach, and the unified approach. In both wave approaches two conditions are
essential for arriving at RT system: the ladder approximation to the intensity operator, and the quasi-stationary
approximation of fields. With these approximations one arrives at the integro-differential equations of the RT
system. However, to arrive the at the RT boundary conditions, one has to impose further approximations. In
the SSO approach weak surface correlation must be imposed. In the unified approach, one has to ignore the
terms involving volumetric spectral densities, and consider only single scattering from the rough boundary when
deriving the boundary conditions.

1. Introduction
The analysis of scattering from a random medium layer with rough boundaries is a difficult problem. This is

the kind of problem one often encounters in remote sensing applications. People have used the phenomenological
radiative transfer approach to study this problem (Ulaby et al., 1986; Lam and Ishimaru, 1993; Shin and Kong,
1989). This approach is conceptually simple and yet very effective for studying multiple scattering processes.
Here one uses the transport equations corresponding to the random medium of the layer and then one imposes
the relevant boundary conditions. Although this procedure appears to be heuristically sound it is not clear
what approximations are involved, and under what conditions such a procedure may be used for the problem
at hand. One way to better understand this radiative transfer approach is to compare and relate it to the
statistical wave approach. For the case of unbounded random media it has been demonstrated how the ladder
approximated Bethe-Salpeter equation reduces to the radiative transport equation (Barabanenkov et al., 1971).
We found that this procedure can be applied to the problem of random medium layer with planar boundaries
and arrive at the radiative transport system as given in Ulaby et al., (1986). However, if the boundaries are
statistically rough, the problem is considerably more complicated and we need special procedures to deal with
them. We have employed two different statistical wave approaches for such problems. In the first approach we
assume that we know the solution of the problem without the volumetric fluctuations. The second approach is
based on the solution of the problem where all the fluctuations vanish. We shall compare the results of these two
approaches with those of the radiative transfer (RT) approach. This will enable us to understand and meaning
and import of the radiative transfer approach as applied to our problem. To keep discussions in a simple setting
we will consider the scalar problem and keep the lower boundary alone as rough.

2. Geometry of the Problem
The geometry of the problem consists of a random medium layer with a rough bottom boundary. The

permittivity of the layer medium consists of a deterministic part ε2 and randomly fluctuating part ε̃ε2· z = 0
and z = −d + ζ(r⊥) describe the upper and lower boundary of the layer. We assume that ε̃ and ζ are small and
smooth zero-mean stationary processes independent of each other. The medium above the layer is homogeneous,
and we impose the Neumann boundary condition on the lower boundary. This layer is excited by a wave incident
from above and we are interested in the scattered waves.

3. Radiative Transfer Approach
The classical equation of radiative transfer is given as

ŝ · ∇I(r, ŝ) + ηI(r, ŝ) =
∫

dΩ′P (ŝ, ŝ′)I(r, ŝ′) (1)

where P (ŝ, ŝ′) is the phase function and η is the extinction coefficient. This equation was originally intended
for unbounded scattering medium. However it can be applied to bounded medium with arbitrary geometry by
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Figure 1: Geometry of the problem.

imposing appropriate boundary conditions. For layer geometry we have the following set of coupled integro-
differential equations.

cos θ
d

dz
Iu(z, Ω) + ηIu(z, Ω) = Ic

u +
|k|4
4π

∫
dΩ′ {Φ(θ, θ′;φ− φ′)Iu(z, Ω′) + Φ(θ,−θ′; φ− φ′)Id(z, Ω′)} (2)

cos θ
d

dz
Id(z, Ω)− ηId(z, Ω) = −Ic

d +
|k|4
4π

∫
dΩ′ {Φ(−θ, θ′;φ− φ′)Iu(z, Ω′) + Φ(−θ,−θ′;φ− φ′)Id(z, Ω′)}(3)

Eqs. (2) and (3) follow from (1) noting that the problem is translationally invariant in azimuth. Iu and Id

represent the incoherent part of radiant intensities corresponding to upward and downward travelling waves
inside the layer. Ic

u and Ic
d represent the corresponding contributions due to coherent intensities. Φ represents

the spectral density of the volumetric fluctuations. Eqs. (2) and (3) are solved using the following boundary
conditions.

Id(0, Ω) = |R12(Ω)|2Iu(0, Ω) (4)

Iu(−d, Ω) =
∫

dΩ′〈|R32(Ω, Ω′)|2〉Id(−d, Ω) (5)

The extinction coefficient η is readily derived from the differential scattering cross section of the random medium.
R12 is the reflection coefficient at the upper boundary for waves incident from below. R32 is the reflection
coefficient at the lower boundary for waves incident from above. Thus we see that the formulation in the
radiative transfer approach is simple and straight forward, and can be applied to a variety of different geometries.
The fundamental quantity in this approach is the radiant intensity and hence is not suitable to represent wave
phenomena such as diffraction, interference, etc. A more general approach to this problem is the statistical
wave approach. In this paper we will describe two such approaches and compare them with that of radiative
transfer.

4. Surface Scattering Operator Approach
We start with the following equations governing the Green’s functions of the problem.

4G12 + k2
1G12 = 0

4G11 + k2
1G11 = −I

4G21 + k2
2G21 = −qG21

4G22 + k2
2G22 = −I − qG22

(6)
where q = ω2µε̃ε2 represents the volumetric fluctuations. We write the above system as

LG = −I −QG (7)

where G ≡ {Gij}, L = diag{L1, L2}, Lj = 4 + k2
j , Q = qdiag{0, 1}. For multiple scattering analysis it is

convenient to convert (7) into the following integral equation.

G = Ğ + ĞQG (8)

where Ğ is the Green’s function of the problem without volumetric fluctuations. In principle, one can construct
such Green’s functions using surface scattering operators (Voronovich, 1994; Soubret et. al., 2002). First average
(8) w. r. t. volumetric fluctuations.
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〈Gv〉 ' Ğ + Ğ〈Q〈G〉vQ〉〈G〉v (9)
On operating this by L we obtain

L〈G〉 = −I − 〈Q〈G〉vQ〉〈G〉v (10)
From this we find that

L1〈G11〉v = −I (11a)
L2〈G22〉v = −I − 〈G22〉v〈qq〉〈G22〉v (11b)

Next average (11) w. r. t. surface fluctuations

L1〈G11〉vs = −I (12a)
L2〈G22〉vs = −I − 〈〈G22〉v〈qq〉〈G22〉v〉s (12b)

We infer from (12a) that the mean propagation constant in Region 1 is unaffected by the fluctuations of the
problem. To interpret (12b) we approximate 〈〈G22〉v〈qq〉〈G22〉v〉s as 〈G22〉vs〈qq〉〈G22〉vs. As we shall see, this
kind of approximation is essential for arriving at the RT system as given in the previous section. Thus

(4+ k2
2)〈G22〉vs = −I − 〈G22〉vs〈qq〉〈G22〉vs (13)

This implies that
k2
2m = k2

2 + 〈G22〉vs〈qq〉 (14)
This is the operational definition for the mean propagation constant in the layer region. With this we can
proceed to construct the mean Green’s functions.

We next turn our attention to the second moments of the fields. Taking the tensor product of (8) with its
complex conjugate and performing volumetric averaging leads to

〈G⊗G∗〉v = 〈G〉v ⊗ 〈G〉∗v{I + K〈G⊗G∗〉v} (15)

where K is the intensity operator corresponding to the volumetric fluctuations. Hence the equation for field
correlation is

〈ψ ⊗ ψ∗〉v = 〈ψ〉v ⊗ 〈ψ〉∗v + 〈G〉v ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v (16)
Averaging this over surface fluctuations we have

〈ψ ⊗ ψ∗〉vs = 〈〈ψ〉v ⊗ 〈ψ〉∗v〉s + 〈〈G〉v ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v〉s (17)

Now we employ the following two approximations essential for arriving at the radiative transfer system.

〈〈G〉 ⊗ 〈G〉∗vK〈ψ ⊗ ψ∗〉v〉s ' 〈〈G〉v ⊗ 〈G〉∗v〉sK〈ψ ⊗ ψ∗〉vs (18a)
K ' 〈Q⊗Q∗〉 (18b)

The first is the weak surface correlation approximation. The second is called the ladder approximation. Thus
we arrive at the following equation for the second moment of the fields inside the layer

〈ψ2 ⊗ ψ∗2〉vs = 〈〈ψ2〉v ⊗ 〈ψ2〉∗v〉s + 〈〈G22〉v ⊗ 〈G22〉∗v〉sK〈ψ2 ⊗ ψ∗2〉vs (19)

Observe that ψ2 = 〈ψ2〉vs + ψ̃ and 〈ψ2〉v = 〈ψ2〉vs + 〈ψ̃2〉v where tilde is used to denote the fluctuating part.
Using these relations in (19) we obtain

〈ψ̃2 ⊗ ψ̃∗2〉vs = 〈〈̃ψ2〉v ⊗ 〈̃ψ2〉
∗
v〉s + 〈〈G22〉 ⊗ 〈G22〉∗v〉s〈q ⊗ q∗〉〈ψ2 ⊗ ψ∗2〉vs (20)

We next introduce Wigner transforms of the wave functions and the Green’s functions in (20) and obtain

Ẽ(z, k) = Ẽs(z, k) +
|k2|4
(2π)6

∫
dz1

∫
dα

∫
dβG(z, k; z1, α)Φv(α− β)E(z1, β) (21)

where Ẽ , Ẽs, E and G are the Wigner transforms of ˜〈ψ2 ⊗ ψ̃2
∗〉vs, 〈〈̃ψ2〉v ⊗ 〈̃ψ2〉

∗
v〉s, 〈ψ2 ⊗ ψ∗2〉vs and 〈〈G22〉v ⊗

〈G22〉∗v〉s, respectively. Φv is the spectral density of volumetric fluctuations. Boundary conditions relate radiant
intensities arriving at and departing the boundary. Therefore, we need to split Ẽ into upward and downward
travelling components. Assume that the fields are quasi-stationary and hence only waves travelling over similar
paths will be correlated. This leads to the following approximation.
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G = Go + Guu + Gud + Gdu + Gdd (22)

Go is the Wigner transform of Go ⊗ Go∗ where Go is the singular part of 〈G22〉. Guu is the Wigner transform
corresponding to that part of 〈G22〉 involving the surface scattering operator 〈Suu〉 and so on. Using this
decomposition we split (21) as follows.

Ẽu(z, k) = Ẽsu(z, k) +
|k2|4
(2π)6

∫ z

−d

dz1

∫
dα

∫
dβG>(z, k; z1, α)Φ(α− β)E(z1, β)

+
|k2|4
(2π)6

∫ 0

−d

dz1

∫
dα

∫
dβ{Guu + Gud}(z, k; z1, α)Φ(α− β)E(z1, β) (23a)

Ẽd(z, k) = Ẽsd(z, k) +
|k2|4
(2π)6

∫ 0

z

dz1

∫
dα

∫
dβG<(z, k; z1, α)Φ(α− β)E(z1, β)

+
|k2|4
(2π)6

∫ 0

−d

dz1

∫
dα

∫
dβ{Gdu + Gdd}(z, k; z1, α)Φ(α− β)E(z1, β) (23b)

On using the expressions for G’s the above pair of equations can be represented as the following integro-
differential transport equation system

[dz + 2η
′′
]Ẽu(z, k⊥) = Ec

u+
|k2|4

16π2|η|2
∫

dα⊥{Φv(k⊥−α⊥; η′−η′α)Ẽu(z, α⊥)+Φv(k⊥−α⊥; η′+η′α)Ẽd(z, α⊥)} (24a)

[dz − 2η
′′
]Ẽd(z, k⊥)=−Ec

d+
|k2|4

16π2|η|2
∫

dα⊥{Φv(k⊥−α⊥;−η′−η′α)Ẽu(z, α⊥)+Φv(k⊥−α⊥;−η′+η′α)Ẽd(z, α⊥)}(24b)

Here Ec
u and Ec

d are the contributions due to coherent intensities. The associated boundary conditions are
obtained as

Ẽd(0, k⊥) = |R12(k⊥)|2Ẽu(0, k⊥) (25a)
Ẽu(−d, k⊥) = 〈|R32(k⊥, k′⊥)|2〉Ẽd(−d, k⊥) (25b)

where R12 and R32 are the reflection coefficients at the lower and upper boundaries for waves in the layer. In
the process of obtaining (25) we had to impose the following approximation

〈[R32 ⊗R∗32][(I + Sdd)⊗ (I + Sdd)∗]〉 ' 〈R32 ⊗R∗32〉〈(I + Sdd)⊗ (I + Sdd)∗〉 (26)

This is similar to the weak surface correlation approximation in the sense that we assume that the influence
of the boundary fluctuations result in local relations. On observing that I(z, Ω) = εck2

2
(2π)2 E(z, k⊥) cos θ we find

that the system of integro-differential Eqs. (24) and (25) is identical to the radiative transfer equation system
(2)–(5). The conditions under which this has been possible are:
1. ladder approximation to the intensity operator
2. quasi-stationary approximation for fields
3. weak surface correlation
For unbounded random media and random medium layer with planar boundaries we find that the first two
conditions are sufficient. But for random media with rough boundaries we need in addition the third approxi-
mation.

5. Unified Approach
The system of equations that we start here is the same as that in the surface scattering operator (SSO)

approach, viz. , (6) and (7). However, the integral equation representation is different. In the SSO approach we
did not directly deal with the boundary conditions. The role of the boundaries are represented entirely by the
SSO. Indeed the boundary conditions are essential to determine the SSO. However, in the unified approach we
will directly make use of the boundary conditions. At the top surface the boundary conditions are given as

G12(r⊥, 0; r′) = G22(r⊥, 0; r′)
ε2∂zG12(r⊥, 0; r′) = ε1∂zG22(r⊥, 0; r′) (27)

There is a similar pair of relations at the top surface involving G11 and G21. At the bottom surface we have

∂nG21(r⊥, ζ; r′) = ∂nG22(r⊥, ζ; r′) = 0 (28)
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These boundary conditions are translated on the plane z = −d by using the following approximation which
applies when the surface fluctuations are small and smooth.

∂zG21(r⊥,−d; r′) = HG21(r⊥,−d; r′)
∂zG22(r⊥,−d; r′) = HG22(r⊥,−d; r′) (29)

where H = ∇⊥ζ · ∇⊥− ζ∂2
z . Using (29) we can convert the differential equation system of our problem into the

following integral equation system.
G = Go + GoQG (30)

where
Q = Qv + Qs (31a)
Qv = qN Qs = −Hδ(z + d)N (31b)

Qv and Qs represent the volumetric fluctuation and the surface fluctuation, respectively. Go is the Green’s
function for the unperturbed problem, viz., the problem when all the fluctuations vanish. Notice that, in this
approach, volumetric and surface fluctuations are treated on equal footing. Thus statistical averaging over
volumetric and surface fluctuations are carried out at the same step. Therefore we do not have any subscripts
for the averaging operations. This is in contrast with the SSO approach where these operations are carried
out separately at different stages of the analysis and we had to use subscripts to indicate whether it is w. r. t.
volumetric fluctuations or surface fluctuations.

First average (30) to get
〈G〉 = Go + Go〈Q〈G〉Q〉〈G〉 (32)

This is the mean Green’s function that we will use in our analysis of the second moments of the fields. Details of
the analysis of (32) are given in Mudaliar (2005). We proceed to the calculation of the field correlation described
by the following equation

〈ψ ⊗ ψ∗〉 = 〈ψ〉 ⊗ 〈ψ〉∗ + 〈G〉 ⊗ 〈G〉∗K〈ψ ⊗ ψ∗〉 (33)

where
K ' 〈Q⊗Q∗〉 = 〈Qv ⊗Q∗

v〉+ 〈Qs ⊗Q∗
s〉 (34)

We employ the Wigner transforms in (33) as before and obtain

E(r, k) = Ẽm(r, k) +
1

(2π)6

∫
dr1

∫
dα

∫
dβG(r, k; r1, α){Tv + Ts}E(r1, β) (35)

where Tv and Ts are spectral representations of 〈Qv ⊗ Q∗v〉 and 〈Qs ⊗ Q∗
s〉, respectively. As before we employ

the quasi-stationary field approximation, use (22), and hence arrive at a system of integro-differential equations.
The system thus obtained in identical to that in SSO approach. However, the boundary conditions are quite
complicated and we have

Ẽ(0, k⊥) = Ẽo(0, k⊥) +
∫ 0

−d

dz1

∫
dα⊥W (0, k⊥; z1, α⊥)Ẽ(z1, α⊥) (36a)

Ẽ(−d, k⊥) = Ẽo(−d, k⊥) +
∫ 0

−d

dz1

∫
dα⊥W (−d, k⊥; z1, α⊥)Ẽ(z1, α⊥) (36b)

where Ẽo is the single scattering solution, and W is a 2 × 2 matrix given in the appendix. Observe that
the boundary conditions are not localized. Furthermore, W involves both surface scattering and volumetric
scattering. Thus our system incorporates volumetric and surface scattering interactions. However, if we let
Φv → 0 and consider only single scattering from the rough boundary, then we obtain the boundary conditions
used in the radiative transfer approach, viz., (25).

6. Conclusion
Radiative transfer approach is very efficient and at the same time simple for describing multiple scatter-

ing phenomena. Quite rightly this approach is very popular and is used in a wide variety of applications.
Consequently, there are several different interpretations of the meaning and domain of applicability of this ap-
proach. One good way to understand this approach is to compare and relate it to the statistical wave approach.
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Its relation to the wave approach has been well established for the case of unbounded random media. The
primary conditions for establishing this equivalence are: ladder approximation to the intensity operator and
quasi-stationary approximation of the fields. We find these two conditions are the only requirements even for
random media with plane parallel boundaries. However, if the boundaries are statistically rough we need to im-
pose additional restrictions. To illustrate this point we considered two statistical wave approaches: the surface
scattering operator approach and the unified approach. In both approaches the integro-differential equations for
intensities are the identical to those used in the RT approach. However the boundary conditions are different
from those in the RT approach. In the case of SSO approach we need to impose the weak surface correlation
approximation to arrive at the boundary conditions of the RT approach. In the case of unified approach we had
to let Φv → 0 and consider only single scattering from the rough surface while deriving the boundary conditions.
With these additional conditions all the three approaches result in the same system of equations. This study has
thus helped us to better understand the three approaches and in particular the relation between the radiative
transfer approach and the statistical wave approach when applied to the problem of scattering from a random
medium layer with rough boundaries.
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Appendix
Wuu =

1
(2π)2

e−2q′′z{|k2|4T v
uu + T s

uu}

T v
uu = rect{z,−d}|S>|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α) + |Suu|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α)

+|Sud|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α)

T s
uu = {|Suu|2e−2η′′d + |Sud|2e2η′′d}Φs(k⊥ − α⊥){(k⊥ − α⊥) · α⊥ − η

′2
α }2

Wud = Wuu{η′α → −η′α}
Wdu =

1
(2π)2

e2q′′z{|k2|4T v
du + T s

du}

T v
du = rect{0, z}|S<|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α) + |Sdu|2e2η′′z1Φv(k⊥ − α⊥; η′ − η′α)

+|Sdd|2e−2η′′z1Φv(k⊥ − α⊥;−η′ − η′α)

T s
du = {|Sdu|2e−2η′′d + |Sdd|2e2η′′d}Φs(k⊥ − α⊥){(k⊥ − α⊥) · α⊥ − η

′2
α }2

Wdd = Wdu{η′α → −η′α}
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