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Optical Materials

Y. A. Godin and S. Molchanov
University of North Carolina at Charlotte, USA

Abstract—We consider propagation of light through an ensemble of N À 1 statistically independent optical
fibers of length L whose refraction coefficient is a random function of length. We introduce the generalized
transmission coefficient |t(k, L)|p for energy k2 and study its quenched and annealed Lyapunov exponents. For
small disorder we calculate the Lyapunov exponents in asymptotic form.

1. Introduction
The idea of intermittency was originally proposed in the study of turbulent flow [1] and has become

widespread in statistical particle physics. Intermittency means random deviations from smooth and regular
behavior. To illustrate it, we consider a bundle of N , N À 1, statistically equidistributed independent optical
fibers of a fixed length L whose refractive index changes randomly along the length of the fiber. If one face of
the bundle is illuminated then, due to reflection of the light and its localization in the fibers, one might expect
that the outlet of the bundle will be uniformly dark. However, because of strong statistical fluctuations of the
transparency (that is a typical manifestation of the intermittency), the exit of the bundle will look like a dark
sky with sparse bright stars. This model was proposed by I. M. Lifshits [2] to explain high irregularity of the
light distribution after propagation through a thick layer of a disordered optical material. Propagation of light
in each fiber is described by the equation

− ψ′′ + σVj(x)ψ = k2ψ, j = 1, 2, . . . , N, (1)

where Vj(x) are homogeneous random potentials equal zero outside the fibers and constant σ characterizes
strength of the disorder.

Equation 1 has scattering solutions

ψk,j(x) =

{
eikx + rj(k) e−ikx, x < 0,

tj(k) eikx, x > L,
(2)

where tj(k) and rj(k) are random complex transmission and reflection coefficients, respectively, such that

|tj(k)|2 + |rj(k)|2 = 1. We also introduce the empirical mean
1
N

N∑

j=1

|tj(k)|2 for the transmitted energy provided

the energy density of the incident wave equals one for each waveguide, and for fixed L and N →∞

1
N

N∑

j=1

|tj(k)|2 a.s.−→ 〈|t(k, L)|2〉, (3)

where a.s. means almost surely (with probability one). Expressions |t(k, L)|p and 〈|t(k, L)|p〉 are decreasing ex-
ponentially as L →∞ whose logarithmic rate of decay we call the quenched and annealed (moment) transmission
Lyapunov exponents, respectively,

γT
q (k, p) = lim

L→∞
ln |t(k, L)|p

L
= p lim

L→∞
ln |t(k, L)|

L
= pγT (k), (4)

µT
a (k, p) = lim

L→∞
ln〈|t(k, L)|p〉

L
. (5)

Using this notation we can quantitatively characterize intermittency: after propagation through the fiber
bundle light exhibits intermittency if

|µT
a (k, 2)| < |γT

q (k, 2)|. (6)

The stronger inequality (6) is, the more intermittent is the distribution of energy on the exit of the fiber bundle.
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2. Analytical Tools
The study of equation 1 with representative potential V (x) is based on the phase-amplitude formalism.

Let ψ
(i)
k (x), i = 1, 2, be the fundamental set of solutions of (1) with initial values ψ

(1)
k (0) = 1, d

dxψ
(1)
k (0) = 0,

ψ
(2)
k (0) = 0, d

dxψ
(2)
k (0) = 1. The matrix

Mk([0, L]) =




ψ
(1)
k (L) kψ

(2)
k (L)

1
k

d

dx
ψ

(1)
k (L)

d

dx
ψ

(2)
k (L)


 (7)

is the propagator of (1) whose determinant equals one.
For the general solution of (1) we put

ψk(x) = rk(x) sin θk(x),
dψk(x)

dx
= krk(x) cos θk(x). (8)

Then for θk and ln rk we obtain the following system [2], [3]

dθk(x)
dx

= k − σV (x) sin2 θk

k
, (9)

d ln rk(x)
dx

=
1
2k

sin 2θk(x)V (x). (10)

In most cases of interest [2], [3], the phase θk(x) ∈ [0, π) represents either a Markov process with generator L
(white noise potential) or a component of a multidimensional Markov process (the Kronig-Penny model). To
illustrate intermittent behavior of light distribution, we use the simplest case when the potential V (x) = ḃ(x)
is the white noise (the derivative of the Brownian motion b(x)).

Equations 9–10 are understood as Itô’s stochastic differential equations with Stratonovich corrections. In
our case, the generator of the diffusion process (9) has the form [4]

(Lf)(θ) =
B2(θ)

2
d2f

dθ2
+

(
A(θ) +

(BB′)(θ)
2

)
df

dθ
, (11)

where A(θ) = k, B(θ) = −σ sin2 θ

k
. Similarly,

d(ln r(x)) =
(

α(θ(x)) +
1
2
βB(θ(x))

)
dx + β (θ(x)) · db(x) (12)

with α = 0 and β(θ) =
σ sin 2θ

2k
. Hence,

rp(x) = e

∫ x

0
D(θ) · db(z) +

∫ x

0
C(θ) dz, (13)

where D(θ) = pβ(θ(z)) and C(θ) = p(α + 1
2βB)(θ(z)) dz. If up(x, θ) = 〈rp(x)|θ(0) = θ〉 is the expectation of

rp(x), then up(x, θ) satisfies the Feynman-Kac formula which for the white noise potential has the form

∂up

∂x
=

σ2 sin4 θ

2k2

∂2up

∂θ2
+

(
k +

σ2(1− p) sin2 θ sin 2θ

2k2

)
∂up

∂θ
+

σ2p sin2 θ cos θ(p cos θ − sin θ)
2k2

up = L̃pup. (14)

Formula (14) allows to calculate the Lyapunov exponent for the amplitude r(L). In the quenched case we have

ln r(L)
L

=
1
L

∫ L

0

1
2
βB(θ(x)) dx + β(θ(x)) · db(x) a.s.−→ 〈1

2
βB〉η

= − σ2

4k2

∫ π

0

η(θ) sin 2θ sin2 θ dθ = γq(k). (15)

Here η(θ)dθ is the invariant measure for the phase θ(x) which satisfies the equation

L∗η =
d2

dθ2

(
σ2 sin4 θ

2k2
η

)
− d

dθ

[(
k +

σ2 sin2 θ sin 2θ

2k2

)
η

]
= 0 (16)

that can be solved exactly.
Consider now the moment Lyapunov exponent
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µa(p) = lim
L→∞

ln〈rp(L)〉
L

. (17)

According to Perron–Frobenius theorem about positive semigroups, µa(p) equals maximum eigenvalue of the
nonsymmetric operator L̃p (14) L̃pψ = µa(p)ψ (18)
and the corresponding eigenfunction ψ(x) is strictly positive.

The Lyapunov exponent γ(k) of the amplitude r(L) and µ(p) have the following properties:

(a) γ(k) > 0. This property leads to the localization theorem for the Hamiltonian Hψ = −ψ′′+σV (x)ψ = λψ
on the whole real axis [2], [3].

(b) For fixed k the annealed Lyapunov exponent is analytic in p and convex.

(c) µ(p) is symmetric with respect to p = −1: µ(p) = µ(−p − 2) and
dµ

dp
(0) = γ(k). In particular, µ(0) =

µ(−2) = 0 (Fig. 1).

(d) For small disorder constant σ and fixed k γ(k) =
πσ2B̂(2k)

4k2
(1+o(σ)), where B̂(2k) is the spectral density

of the potential V . For the white noise γ(k) =
σ2

8k2
(1 + o(σ)) and µa(p) ≈ 1

2
p(p + 2)σ2γ(k) as σ → 0.
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Figure 1: Graphs of the annealed moment Lyapunov exponent µa(p) (solid line) and transmission Lyapunov
exponent µT

a (p) (crossed line) for fixed k and small σ.

The energy transmission coefficient can be calculated through the matrix Mk([0, L]) (7) as follows

|t(k, L)|2 =
4

2 + ‖Mk([0, L])‖2 , (19)

where the norm is understood as the sum of the squares of matrix’s entries. Then ‖Mk([0, L])‖2 = [r(1)
k (L)]2 +

[r(2)
k (L)]2. From asymptotic behavior of the amplitudes ln r

(i)
k (L) ≈ γ(k)L, i = 1, 2, with probability one as

L →∞ we conclude that ln ‖Mk([0, L])‖ ≈ γ(k)L. Therefore,

ln |t(k, L)|
L

=
1
L

ln

√
4

2 + ‖Mk([0, L])‖2 → −γ(k). (20)

Thus, the quenched transmission Lyapunov exponent is

µT
q (k, p) = lim

L→∞
ln |t(k, L)|p

L
= −pγ(k) < 0. (21)

Calculation of the annealed Lyapunov exponent is more difficult. Typically rk ∼ eLγ(k). However, with expo-
nentially small probability rk(L) can be of the order e−δL, δ > 0. Then 〈rp

k(L)〉 = e−pδLP{ln rk(L) < −δL},
and for very negative p the product tends to +∞ (Fig. 1). We use large deviation theory [5] to calculate
µT

a (k, p). Let us take 0 ≤ β < γ and estimate P{rk(L) < eβL}. Using exponential Chebyshev inequality with
optimization over parameter p ≤ 0 we obtain
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P{rk(L) < eβL} = P{rp
k(L) > epβL} ≤ min

p≤0

〈rp
k(L)〉
epβL

∼ min
p≤0

e(µa(k,p)−pβ)L = eµ∗(k,p)L, (22)

where µ∗(k, β) = max
p

(−pβ + µa(k, p)) is the Legendre transform [6] of µ(k, p) for fixed k with respect to

parameter p. It is well-known that in the Markov case it is not only estimation from above but the logarithmic
equivalence: P{rk < eβL} log∼ e−µ∗(k,p)L. Now for p > 0

〈|t(k, L)|p〉 log∼
∫

1
e−pβL + epβL

dP{rk < eβL} = max
0≤β≤γ

e−pβL−µ∗(k,β) =

{
eµ(k,−p)L, 0 < p ≤ 1,

eµ(k,−1)L, p > 1.
(23)

For small σ we can use parabolic approximation for µT
a (k, p) that gives

γT
q (k, p) = −p

πB̂(2k)
4k2

σ2(1 + o(1)) (24)

and

µT
a (k, p) =





p(p + 2)
πB̂(2k)

8k2
σ2(1 + o(1)), p ≤ 1,

−πB̂(2k)
4k2

σ2(1 + o(1)), p > 1,

(25)

where B(x) = Cov(V (y)V (y+x)) is the covariance of random potential V (x), and B̂(k) =
1
2π

∫ ∞

−∞
e−ikxB(x) dx

is the corresponding energy spectrum of V (x) (Fig. 1). In particular, for p = 2

µT
a (k, 2) ≈ 1

4
γT

q (k, 2) < 0. (26)

This relation is the manifestation of the strong intermittency (cf. [1]). It shows that the main contribution to
the transmitted energy comes not from “typical” fibers where the logarithmic rate of energy decay is γT

q (k, 2),

but rather from few rare fibers (the probability of their occurrence is e
1
4 γT

q (k,2)L) through which significant part
of the energy of order O(1) is transmitted. Thus, we have the I. M. Lifshits picture described in the introduction.

3. Conclusion
We have considered propagation of light through a bundle of independent optical fibers whose refractive

index is a random function of length. It is found that distribution of energy at the exit of the bundle has inter-
mittent behavior. For quantitative estimation of irregularity we introduced the generalized energy transmission
coefficient and studied its Lyapunov exponent. Essential difference in the quenched and annealed energy trans-
mission Lyapunov exponents is suggested as a manifestation of intermittency. In the case of small randomness
of the fiber refractive index it is found that the energy transmission Lyapunov exponent of a typical single fiber
is four times bigger than the average one of the bundle. Unlike the moment Lyapunov exponent µa(p) for the
amplitude which has quadratic dependence on the moment p, the transmission moment Lyapunov exponent is
constant for p ≥ 1.
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