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Abstract—Novel analytical method based on extended spectral domain approach (ESDA) is presented for
cylindrical microstrip line. The method utilizes the aperture fields as the source quantities, as opposed to the
conventional methods, which have used the current on the strip as the source. The whole region can be divided
into sub-regions by the introduction of aperture fields, and each sub-region can be treated independently. This
method makes possible the analysis both of zero and finite thickness of the strip conductor. The numerical
procedure incorporates the effects of the edge singularities properly and can afford the efficient and accurate
calculations for the phase constants and characteristic impedances of a microstrip line with zero- and finite-
thickness conductor. The calculated results by the present method reveal the effect of conductor thickness on
the characteristics of a cylindrical microstrip line.

1. Introduction
Recently, curved surface substrates have attracted an attention as materials of antennas and front ends for

portable terminals. A lot of analyses of the propagation characteristic of the stripline and the coplanar waveguide
composed on a cylinder substrate are reported [1–6], including the moment method, the FDTD method [3], and
the finite element method [5]. However, their works assumed the conductor thickness to be zero, and the report
concerning the effect of the conductor thickness on the propagation characteristic has not be found. Recently,
authors reported on the effect of the finite thickness of a conductor on electric characteristics of cylindrical
coplanar waveguides (CCPWs) by using the extended spectral domain approach (ESDA).

In this paper, we report on the analytical method of the cylindrical microstrip line based on ESDA, and
the effect of conductor thickness by numerical calculation. The present method utilizes the electric fields at
the interface of the aperture as the source quantities, as opposed to the conventional methods [1, 2], which
have used the current on the strip as the source. The accurate and efficient numerical procedure, which makes
consideration for the field singularities near the conductor edge of zero- and finite-thickness, reveals the effect of
the curvature and the finite thickness of a conductor on the characteristic impedances and the phase constants
of the cylindrical microstrip line.

2. Theory
Cross section of a microstrip line on a cylindrical dielectric substrate is shown in Fig. 1(a). Curvature R of

the cylindrical substrate is defined as the ratio of inner and outer diameter of substrate,

(a) Cross section. (b) Aperture fields.

Figure 1: Schematic structure of cylindrical microstrip line.
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where h = b − a is substrate thickness. A signal conductor of W in width is put on the substrate, which is
backed by the ground conductor. Both conductors are assumed to be perfect electric conductor (PEC), but
the signal conductor has the finite thickness t, as opposed to the previous reports. A single-layered substrate
is assumed in the following explanation for the simplicity, although the method is applicable to multilayered
and/or overlaid structure problem. The theoretical scheme is based on the ESDA [8–10]. The method has
been successfully worked out to analyze the effect of the conductor thickness of the various types of planar
transmission lines. Here, in this study, the method is extended further to the analysis of the effect of conductor
thickness in cylindrical microstrip line. In the ESDA, first the aperture electric fields are introduced at the
circumferential surfaces of dielectric substrate at ρ = b, eb(φ), and the upper surface of signal conductor at
ρ = b + t, ec(φ) shown in Fig. 1(b). By introducing these aperture fields and utilizing the equivalence theorem,
the whole region is divided into subregions, i. e., (I) the outer (ρ > b + t), (II) the aperture (b < ρ < b + t)
and (III) the substrarte (ρ < b) subregions. After dividing the region, each subregion can be treated separately,
and then the longitudinal components of electromagnetic fields in each subregion are expressed in terms of the
appropriate eigenfunctions Φ(i)

n (φ), Ψ(i)
n (φ), which satisfy the boundary conditions in the φ-direction.

E(i)
z (ρ, φ)e−jβz =

∞∑
n=0

Ẽ(i)
z (ρ)Φ(i)

n (φ)e−jβz (2)

H(i)
z (ρ, φ)e−jβz =

∞∑
n=0

H̃(i)
z (ρ)Ψ(i)

n (φ)e−jβz (3)

i = I, II, III

where β is the unknown phase constant and Ẽ
(i)
z is the transform of E

(i)
z . The transversal (ρ, φ) field components

can be related to the longitudinal components E
(i)
z and H

(i)
z by utilizing the field equations. The general solution

of the transform Ẽ
(i)
z in region (i) can be expressed as

Ẽ(i)
z (ρ) = A(i)Jn(βcρ) + B(i)Yn(βcρ) (4)

βc =
√

ω2εµ− β2

where A(i), B(i) is unknown constants, and they are determined by the boundary conditions at the interfaces.
The continuities of electric fields are expressed as

E
(III)
φ (ρ = a + 0, φ) = 0, E(III)

z (ρ = a + 0, φ) = 0 at ρ = a (5)

E
(II)
φ (ρ = b + 0, φ) = E

(III)
φ (ρ = b− 0, φ) = eb

φ at ρ = b (
φW

2
< φ < π) (6)

E(II)
z (ρ = b + 0, φ) = E(III)

z (ρ = b− 0, φ) = eb
z (7)

E
(I)
φ (ρ = b + t + 0, φ) = E

(II)
φ (ρ = b + t− 0, φ) = ec

φ at ρ = b + t (
φW

2
< φ < π) (8)

E(I)
z (ρ = b + t + 0, φ) = E(II)

z (ρ = b + t− 0, φ) = ec
z. (9)

These continuity conditions are transformed into spectral domain and they are used to relate the unknowns
A(i), B(i) to the aperture fields. The fields are then related to the aperture fields as follows

E(II)(ρ, φ) =
∫

φ′
{T (II)

(b, φ|b + t, φ′) · ec(φ′) + T
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (10)

H(II)(ρ, φ) =
∫

φ′
{Y (II)

(b, φ|b + t, φ′) · ec(φ′) + Y
(II)

(b, φ|b, φ′) · eb(φ′)}dφ′ (11)

where, T ′
s, Y ′

s are the dyadic Green’s functions. Then, the integral equations on the aperture fields are obtained
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by using the continuities of magnetic fields at the aperture surfaces,

H
(II)
φ (ρ = b + 0, φ) = H

(III)
φ (ρ = b− 0, φ) (

φW

2
< φ < π) (12)

H(II)
z (ρ = b + 0, φ) = H(III)

z (ρ = b− 0, φ) (13)

H
(I)
φ (ρ = b + t + 0, φ) = H

(II)
φ (ρ = b + t− 0, φ) (

φW

2
< φ < π) (14)

H(I)
z (ρ = b + t + 0, φ) = H(II)

z (ρ = b + t− 0, φ). (15)

Applying the Galerkins procedure to these integral equations, we get the determinant equation for the phase
constant β. In the Galerkins, the unknown aperture fields are expressed in terms of the appropriate basis
functions ξφi(φ) and ξzi(φ) as,

eb
φ(φ) =

N∑

i=1

bφiξφi(φ), eb
z(φ) =

N∑

i=1

bziξzi(φ) (16)

ec
φ(φ) =

N∑

i=1

cφiξφi(φ), ec
z(φ) =

N∑

i=1

cziξzi(φ) (17)

where bφi, bzi, cφi, and czi are the unknown expansion coefficients. The basis functions ξφi(φ), ξzi(φ), which
incorporate the singularities of fields properly near the conductor edge [8–10], are used in the following compu-
tations. For the case with the conductors of zero thickness, the aperture region (II) will be eliminated in the
procedure and the aperture field eb equals to ec.

The definition of the characteristic impedance is somewhat ambiguous for the hybrid mode propagation
along microstrip line. We adopt the voltage-current definitions

ZV I =
Vo

Io
(18)

where Vo is the voltage between the center strip and the ground conductor, and Io is the total current flowing
in the z-direction on the strip conductor. The voltage Vo is evaluated by integrating the radial component of
electric field E

(III)
ρ between the ground (ρ = a) and the signal (ρ = b) conductors,

V (φ) =
∫ b

a

Eρ(ρ, φ)dρ (19)

where φ may be any in 0 < φ < φW /2. Therefore V (φ) is integrated with φ over 0 < φ < φW /2 to get

Vo =
2

φW

∫ φW
2

0

V (φ)dφ. (20)

The current Io can be evaluated by the line integral C of the magnetic field around the strip conductor [7]

Io =
∮

c

H · dl. (21)

3. Numerical Procedure and Results
The conventional methods have treated the propagation characteristics of a microstrip line on a cylindrical

substrate assuming the conductor thickness to be zero [2]. The present method, when the aperture field is
adopted as the source quantity in the formulation, can afford to present the characteristics of the case with
finite as well as zero thickness. Also, the present formulation procedure could employ the current on the strip
instead of the aperture field as the source quantity, although this procedure could be applied only to the case
with zero thickness. Fig. 2 shows the frequency dependency of the effective dielectric constant εeff and the
characteristic impedance ZV I of a microstrip line on a cylindrical substrate with larger R [2]. The effective
dielectric constant εeff is obtained in terms of the phase constant β as

εeff = {β/ω
√

ε0µ0}2 (22)
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The results of zero thickness conductors are calculated by both the aperture field and the current bases, and
both results are in excellent agreement and they agree well with the conventional ones [2] over the frequencies.
The figure includes the results of the case with finite thickness of the strip conductor (50 µm) showing the effects
of the conductor thickness on εeff and ZV I .

(a) εeff . (b) ZV I .

Figure 2: Frequency dependency of propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, R = 0.9.

(a) εeff . (b) ZV I .

Figure 3: Curvature dependency of propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, f = 10 GHz.

Figure 4: Thickness effect on propagation characteristics. εr = 9.6, h = 1 mm, W = 1 mm, R = 0.9.

The present methods is equally applicable to the a cylindrical microstrip line with larger and smaller curva-
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ture rate R. Fig. 3 shows the curvature dependency of εeff and ZV I . The value of εeff increases rapidly when
curvature rate R is 0.5 or less. That is, the concentration of the electromagnetic field in the dielectric substrate
becomes stronger as the curvature ratio becomes smaller. Therefore, the effect of the thickness of the conductor
becomes smaller for the smaller R. Fig. 4 shows the conductor thickness effect where the relative changes of εeff

and ZV I are presented with the thickness variation of conductor. Both εeff and ZV I are decrease monotonously
up to 100 µm thickness conductor. It should be noted that the effect of the conductor thickness becomes smaller
for higher frequency (f = 18 GHz), as opposed to a cylindrical coplanar waveguides (CCPWs), where the effect
becomes larger for higher frequency. This is why the electromagnetic field concentrates more in the dielectric
substrate between the strip and the ground conductors and the effect of conductor thickness becomes smaller
for higher frequency.

4. Conclusion
Novel analytical method based on extended spectral domain approach (ESDA) is presented for a cylindrical

microstrip line. The method is able to treat the effect of the finite thickness of a strip conductor by utilizing the
aperture electric fields as source quantities. The numerical procedure incorporates the effects of the edge singu-
larities properly and can afford the efficient and accurate calculation method for the characteristic impedances
in addition to the phase constants of a cylindrical microstrip line. The calculated results for zero-thickness
conductor by both procedures, based on current or aperture field, are in good agreement and also they agree
well with the published data. The results obtained by the present method show the curvature dependency of
the propagation characteristics and reveal the effect of conductor thickness, which is different from that of a
cylindrical coplanar waveguides (CCPWs).
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