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Abstract—Since the discrete complex image method (DCIM) has been widely used in conjunction with the
Method of Moments (MoM) to efficiently analyze printed structures, some lingering issues related to the im-
plementation of DCIM and their brief clarifications are first reviewed. Then, an efficient and rigorous electro-
magnetic simulation algorithm, based on the combination of MoM and DCIM, is proposed and developed for
the solution of mixed-potential integral equation (MPIE) for printed structures with multiple vertical strips in
multilayer media. The algorithm is possibly the most efficient approach to handle multiple vertical conductors,
even spanning more than one layer, in printed circuits.

1. Introduction
Spatial-domain method of moments (MoM) is a widely used technique for the solution of mixed-potential

integral equation (MPIE) for printed geometries in multilayer planar media [1], thanks to the introduction
of an efficient closed-form approximation method [2] and its improved versions of the spatial-domain Green’s
functions [3, 4]. This approach, known as discrete complex image method (DCIM), basically approximates the
spectral-domain Green’s functions in terms of complex exponentials, and then casts the integral representations
of the spatial-domain Green’s functions into closed-form expressions via Sommerfeld identity [5]. Although
DCIM is quite robust and works well to get the closed-form Green’s functions, it has some limitations in the
form of a limited range of validity depending upon the implementation of the method.

Some issues originating from the implementation of DCIM are discussed and possible clarifications are
provided in Section 2. In Section 3, application of the closed-form Green’s functions in conjunction with the
spatial-domain MoM is reviewed, with the emphasis given to efficient handling of multiple vertical conductors.
Finally, conclusions are provided in Section 4.

2. Discussions on Closed-form Green’s Functions
It is well known that spectral-domain Green’s functions can be written analytically in planar multilayer

media, and their spatial-domain counterparts can be obtained from the inverse Hankel transform of the spectral-
domain Green’s functions [4, 6], as
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spatial and spectral domain, respectively, H
(2)
0 is the Hankel function of the second kind and SIP is the Som-

merfeld integration path. Since the integrand usually exhibits oscillatory nature and slow convergence, rendering
the transformation computationally very expensive, spectral-domain Green’s functions can be approximated by
complex exponentials, via the generalized pencil-of-function (GPOF) method [6], to obtain closed-form expres-
sions from the inverse Hankel transform. Since the crucial step in this approach is the approximation of the
spectral-domain Green’s functions, which is detailed in [3, 4], discussions on the accuracy of the method for large
distances have concentrated mainly on the approximation procedure, because the resulting closed-form Green’s
functions are, in general, accurate enough for distances as far as k0ρ = 20 − 30 (ρ/λ = 3 − 4), beyond which
they may deteriorate significantly.

In the literature, there were basically three attributable sources of problems in the implementation of DCIM:
(i) not extracting the quasi-static terms, (ii) introducing a wrong branch point in the process of approximation,
and (iii) not extracting the surface wave poles (SWP). In the original implementation of DCIM, as introduced
in [2], there were only one level of approximation, and it was necessary to extract the quasi-static terms to
make the remaining portion of the spectral-domain Green’s functions converge to zero for large kρ values.
However, with the introduction of two-level and multi-level approximation algorithms [3, 7], the necessity of
finding the quasi-static terms and their extraction before the approximation has been eliminated. The issue of
introducing wrong branch point originates from the following observations: spectral-domain Green’s functions,
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when the source is in a bounded layer, have no branch point at kρ = ks, although they have kzs term in the
denominator, where ks is the wave number of the source layer; and the approximating exponentials with kzs

factor in the denominator seem to have branch point at kρ = ks. However, one should note that the exponential
approximation is always performed over the deformed path of SIP and the function to be approximated over this
path is single valued with the right choice of the branch. Therefore, the resulting exponentials divided by kzs is
a singlevalued function with this right choice of the branch. The last problem concerning the SWPs is inherent
to the approach unless the SWP contributions are totally extracted from the functions to be approximated.
The detailed discussions on these issues and some clarifications can be found in [4].

3. MoM-DCIM Application for Multiple Vertical Strips
In the analysis of printed geometries with multiple vertical strips, a method based on MoMDCIM is employed,

as proposed in [7], and it is extended to efficiently handle multiple vertical strips. The algorithm and its efficient
handling of multiple vertical strips can be described by examining one of the inner-product terms in the MoM
matrix entries, as follows:
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where Tx(x, y) and Bz(x, y) are the testing and basis functions used in the evaluation of corresponding MoM
matrix entry. Writing the spatial-domain Green’s function Gq

z in terms of its spectral-domain representation
G̃q
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Note that the auxiliary function Fz(u, v) is obtained analytically in terms of complex exponentials and it is an
explicit function of u = x−x′ and v = y−y′, and the inner integral of (3) can easily be obtained analytically for
most basis and testing functions. Therefore, the same inner-product terms corresponding to other vertical strips
can be obtained simply by evaluating Fz(u, v) for different values of u and v, as long as the basis functions used
to represent the current densities along them have identical z′-dependencies. Consequently, having more than
one vertical conductors in a printed circuit would not require significant amount of additional computation.

The formulation described above is applied to a microstrip line lying along x-direction with four vertical y-
spanning strips to assess and demonstrate the computational efficiency of the method. Here are the parameters
of the microstrip line: the dielectric constant of the medium is 4.0; the length and width of the line is 18.0 cm
and 0.1 cm, respectively; the thickness of the substrate is 0.4 cm; the frequency of operation is 2GHz; and 71
horizontal basis functions along x-direction are employed. As the thickness of the substrate is uniform, which
is usually the case for most of antenna and microwave applications, two basis functions are used over every
vertical strip, and naturally they have the same z and z′ dependencies, satisfying the only criterion for the
efficiency of the method for multiple vertical strips. To validate the method, the current distribution along the
microstrip line is first obtained, and compared to that from a commercially available EM simulation software,
em by Sonnet, as shown in Fig. 1. An excellent agreement is observed; slight differences in the amplitude can be
attributed to the inherent models of the approaches: em by Sonnet solves the problem in shielded environment
while the method proposed here solves it in open environment, which inevitable causes some slight differences
on the resonant frequencies of the structure.

Once the validation is complete, the computational efficiency of the proposed method is assessed in terms
of the CPU time obtained from a 1.5 GHz Centrino CPU. The microstrip line is first analyzed with one vertical
strip (at x = 7.0 cm), and then the number of vertical strips is increased to four by one-by-one. As the ultimate
measure for the efficient handling of multiple vertical metallization, in addition to the first one, matrix fill time for
additional vertical strips are listed in Table 1. For the matrix fill times in case I, the necessary auxiliary functions
are calculated only once and used repeatedly, but for case II, the auxiliary functions are re-calculated for every
entry corresponding to each basis and testing functions introduced with the addition of new vertical strips. It
is observed that efficient use of auxiliary functions has significantly reduced the computational complexity of
the whole method. This can be stated with adding new vertical strips to the microstrip line with one vertical
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strip costs about 4.0 seconds whereas it requires 70.0 seconds in case of not using auxiliary functions repeatedly.
Note that CPU times are obtained by using only the symmetry of the MoM matrix and it has not been used
any acceleration technique for the evaluation of MoM matrix entries.

Figure 1: Magnitude of the current along the microstrip line with 4 vertical strips.

Table 1: MoM matrix fill times for each additional vertical strip.

Number of vertical MoM matrix fill-time (sec)

strips CASE I CASE II

1 11.8 69.8

2 4.0 68.6

3 4.1 72.2

4 4.2 75.8

4. Conclusions
Issues related to the implementation of DCIM have been first clarified, as it is used in conjunction with the

MoM in the algorithm proposed in this paper. The algorithm, based on the DCIM-MoM technique, is assessed
in terms of its accuracy and the efficiency in the analysis of printed geometries with multiple vertical conductors.
It has been shown mathematically and numerically that, as long as the vertical dependencies of the basis or
testing functions are chosen to be the same, the inclusion of additional vertical conductors is extremely efficient.
Therefore, this approach seems to be a good candidate to use in conjunction with an optimization algorithm in
a CAD tool.

REFERENCES

1. Mosig, J. R., “Arbitrarily shaped microstrip structures and their analysis with a mixed potential integral
equation,” IEEE Trans. on Microwave Theory Tech., Vol. MTT-36, No. 2, 314–323, Feb. 1988.

2. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, “A closed-form spatial Green’s function for the
thick microstrip substrate,” IEEE Trans. on Microwave Theory Tech., Vol. 39, 588–592, March 1991.

3. Aksun, M. I., “A robust approach for the derivation of closed-form green’s functions,” IEEE Trans. on
Microwave Theory Tech., Vol. 44, No. 5, 651–658, May 1996.

4. Aksun, M. I. and G. Dural, “Clarification of issues on the closed-form Green’s functions in stratified media,”
IEEE Trans. Antennas Propagation, Vol. AP-53, 3644–3653, Nov. 2005.

5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE PRESS Series on Electromagnetic Waves,
New York, 1995.

6. Hua, Y. and T. K. Sarkar, “Generalized pencil-of-function method for extracting poles of an EM system
from its transient response,” IEEE Trans. Antennas Propagat., Vol. 37, 229–234, Feb. 1989.

7. Kinayman, N. and M. I. Aksun, “Efficient use of closed-form green’s functions for the analysis of planar
geometries with vertical connections,” IEEE Trans. on Microwave Theory Tech., Vol. 45, 593–603, May
1997.


