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Abstract—This paper examines the near-field response to source currents in lossy media with exponential
conductivity inhomogeneity. The motivation for this work is to understand the modification of the polar
ionosphere D region (50–90 km altitude) by powerful high frequency transmitters. The transmitted waves heat
the D region plasma, causing a localized conductivity perturbation. In the presence of the DC electric field
of the polar electrojet, the conductivity perturbation produces a current perturbation referred to as “antenna
current” that can drive extremely/very low frequency radiation. Here we seek to understand the production
of antenna current in a strongly inhomogeneous plasma. In the lower D region, the static approximation is
valid, and we solve using a scalar potential description. In the upper D region, we use the magnetoquasistatic
approximation and solve using a vector potential approach.

1. Introduction
We begin the formulation by defining standard scalar and vector potentials for the electric and magnetic

field perturbations introduced by the conductivity perturbation. In time-harmonic form, we have

E = iωA−∇Φ B = ∇×A, (1)

where i is the imaginary unit and ω is frequency. Let us suppose that the charge relaxation time and elec-
tromagnetic transit time are both small compared to the time scale of interest. This assumption allows us to
ignore the effect of displacement current, so that current consists of only the imposed antenna current Js due
to the conductivity perturbation, and a self-consistent conduction current σE, where σ is the conductivity of
the medium. Adopting a Coulomb gauge, the wave equation is given by

∇2A + iωµ0σA = −µ0Js + µ0σ∇Φ, (2)

where µ0 is the permeability of the medium, assumed the same as free space. The two terms on the right side
can be viewed as source terms for the vector potential. We will proceed as follows. In the lower ionosphere D
region, the conductivity is small such that the magnetic relaxation time is fast compared to the time scale of
interest, and thus we ignore effects of vector potential. In the upper D region, the conductivity is large such that
the magnetic relaxation time is slower than the time scale of interest. In this case, magnetic diffusion dominates
the behaviour of the system, and we ignore the effects of space charge and its associated scalar potential. We
will analyze each of the two limits.

The above statements assume a simple scalar conductivity. In practice, the plasma conductivity is anisotropic
and requires a matrix representation. In the northern polar region the direction z (altitude) is antiparallel the
earth’s magnetic field. The appropriate conductivity tensor is given by

σ = ehz




σP σH 0
−σH σP 0

0 0 σ0


 , (3)

where 1/h is the scale height of the conductivity. Here, the exponential factor models the variability in the
plasma conductivity due to the plasma density inhomogeneity, and the matrix entries are constants pertaining
to the anisotropic plasma conductivity tensor. The quantity σP is the Pedersen conductivity, σH is the Hall
conductivity, and σ0 is the specific conductivity. We are assuming that all conductivities vary in altitude at the
same rate. Strictly speaking this is not the case as the specific conductivity increases with altitude somewhat
more rapidly than the Pedersen or Hall conductivities. However, for the purposes of a simple treatment, we
ignore the fine details of the altitude dependence of the individual conductivity elements.

2. Static Solution
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We now turn to the problem of determining the scalar potential Φ in the static limit. If we incorporate the
tensor definition for σ into Equation (2), ignore the vector potential, and take the divergence of both sides, we
find that

∇2Φ +
( σ0

σP
− 1

)∂2Φ
∂z2

+
hσ0

σP

∂Φ
∂z

=
e−hz

σP
∇ · Js ≡ S(r), (4)

where S(r) is the source distribution. Let us expand the right and left sides of Equation (4):

S(r) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)δ(r− r0) (5)

Φ(r) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)GΦ(r, r0). (6)

Inserting these expansions into Equation (4) yields an expression for the Green’s function GΦ(r, r0):

∇2GΦ(r, r0) +
( σ0

σP
− 1

)∂2GΦ(r, r0)
∂z2

+
hσ0

σP

∂GΦ(r, r0)
∂z

= δ(r− r0). (7)

This is a constant coefficient equation, and therefore GΦ(r, r0) is the same as GΦ(r− r0). We can write

∇2GΦ(r) +
( σ0

σP
− 1

)∂2GΦ(r)
∂z2

+
hσ0

σP

∂GΦ(r)
∂z

= δ(r). (8)

This equation solves easily using the method of Fourier transforms. Taking the Fourier transform of Equation (8),
solving for GΦ(k), and then inverse transforming, results in the following solution for GΦ(r):

GΦ(r) = − 1
8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dk

eik·r

k2
x + k2

y + (σ0/σP )k2
z − ih(σ0/σP )kz

. (9)

We can now convert Equation (9) to cylindrical co-ordinates (ρ, φ, z) and (kρ, α, kz) and perform the integrals:

GΦ(r) = − 1
8π3

∫ ∞

0

dkρkρ

∫ ∞

−∞
dkz

eikzz

k2
ρ + (σ0/σP )k2

z − ih(σ0/σP )kz

∫ 2π

0

dαeikρρ cos(φ−α) (10)

= − 1
4π2

∫ ∞

0

dkρkρJ0(kρρ)
∫ ∞

−∞
dkz

eikzz

k2
ρ + (σ0/σP )k2

z − ih(σ0/σP )kz
(11)

= − e−hz/2

2πσ0/σP

∫ ∞

0

dkρ
kρJ0(kρρ)e−

√
(h/2)2+(σP /σ0)k2

ρ|z|
√

(h/2)2 + (σP /σ0)k2
ρ

(12)

= −e−hz/2−h
√

(σ0/σP )ρ2+z2/2

4π
√

(σ0/σP )ρ2 + z2
. (13)

The integral over kz above is facilitated by the residue theorem, and the integral over kρ uses the following
identity ∫ ∞

1

due−αuJ0(β
√

u2 − 1) =
e−
√

α2+β2

√
α2 + β2

, (14)

which can be found in standard tables. The scalar potential for a given source distribution can then be found by
integrating this Green’s function over the source distribution. The basic form of the scalar potential is similar
to that of sources in homogeneous isotropic media, except there is exponential decay in the upward direction,
and the potential is squeezed in the ρ direction compared to the z direction by a factor corresponding to the
degree of anisotropy σ0/σP . We also note that the Hall conductivity σH does not play a factor in the static
scalar potential.

3. Static Solution Example
In this section, we provide an example of the static solution. Let us consider a current source Js that consists

of a horizontal cylinder-like structure modelled by

Js = x̂Iδ(y)δ(z)[µ(x + L/2)− µ(x− L/2)], (15)
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where I is the current and L is the cylinder length. The source distribution is given by

S(r0) = (e−hz/σP )∇ · Js (16)
= (I/σP )[δ(r0 + x̂L/2)− δ(r0 − x̂L/2)]. (17)

The potential is given by

Φ(r) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0S(r0)GΦ(r− r0) (18)

=
Ie−hz/2

4πσP

{
e−h

√
(σ0/σP )[(x−L/2)2+y2]+z2/2

√
(σ0/σP )[(x− L/2)2 + y2] + z2

− e−h
√

(σ0/σP )[(x+L/2)2+y2]+z2/2

√
(σ0/σP )[(x + L/2)2 + y2] + z2

}
. (19)

The total current J = Js − σ · ∇Φ, near the z axis, is given by:

J(x,y)≈0 = (Js − σ · ∇Φ)(x,y)≈0 (20)

= x̂Iδ(y)δ(z)− (x̂σP − ŷσH)ILσ0(1 + hw/2) exp[h(z − w)/2]/(4πσ2
P w3), (21)

where w =
√

(σ0/σP )(L/2)2 + z2. The conduction current −σ · ∇Φ flows largely above the origin, opposite the
source current, effectively forming a vertical current loop. The conduction current distributions are shown for
L = 15 km and the cases of homogeneous isotropic, inhomogeneous isotropic, and inhomogeneous anisotropic
media.

Figure 1: Static conduction current distributions. Solid line: homogeneous isotropic media. Dashed line:
inhomogeneous isotropic media (1/h = 2.5 km). Dotted line: inhomogeneous anisotropic media (1/h = 2.5 km,
σ0/σP = 2).

4. Magnetoquasistatic Solution
Let us now consider the problem of determining the vector potential relevant to the magnetoquasistatic

limit. Returning to Equation (2), we ignore the scalar potential so that we have

∇2A + iωµ0σ ·A = −µ0Js. (22)

By Equation (4), the z component is decoupled from the x and y components. Since the current perturbation
Js is generally horizontally directed in practical situations, Az is not driven, and we assume it is zero. The x
and y components are decoupled by transforming to a basis of eigenvectors of the conductivity tensor:

[
Âx

Ây

]
=

1√
2

[
1 −i
1 i

] [
Ax

Ay

]
. (23)
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After the transformation the equations for the vector potential components Âx and Ây can be written as

∇2

[
Âx

Ây

]
+ iωµ0e

hz

[
σP + iσH 0

0 σP − iσH

] [
Âx

Ây

]
= − µ0√

2

[
Jsx − iJsy

Jsx + iJsy

]
≡ −µ0Ĵs. (24)

The Green’s function for a component of Â is given by
[
∇2 + iωµ0e

hz(σP ± iσH)
]
GÂ(r, r0) = δ(r− r0). (25)

In view of the ehz factor, GÂ(r, r0) = GÂ(x− x0, y − y0, z, z0) 6= GÂ(r− r0). Thus we write
[
∇2 + iωµ0e

h(z+z0)(σP ± iσH)
]
GÂ(x, y, z + z0, z0) = δ(r). (26)

A solution by the method of Fourier transforms is confounded by the ehz factor. Thus we transform in the x and
y directions only, which converts the partial differential Equation (25) into an ordinary differential equation:

[ ∂2

∂z2
− k2

ρ + iωµ0e
h(z+z0)(σP ± iσH)

]
GÂ(kx, ky, z + z0, z0) = δ(z). (27)

The solutions are the Bessel functions Jν [λeh(z+z0)/2] and Yν [λeh(z+z0)/2], with λ = 2
√

iωµ0(σP ± iσH)/h and
ν = 2kρ/h. In the z → ∞ limit, the only bounded linear combination of solutions for 0 < arg(λ) < π is a
Hankel function of the form C1H

(1)
ν [λeh(z+z0)/2]. Similarly, in the z → −∞ limit, the only bounded solution

for all complex λ is a Bessel function of the form C2Jν [λeh(z+z0)/2]. To determine the constants C1 and C2 we
impose that the solutions in the regions z > 0 and z < 0 are continuous at z = 0:

C1H
(1)
ν

(
λehz0/2

)− C2Jν

(
λehz0/2

)
= 0, (28)

and that inhomogeneous Equation (27) is satisfied, which is done by integrating over a small interval at z = 0:

C1H
(1)′
ν

(
λehz0/2

)− C2J
′
ν

(
λehz0/2

)
= 2/

(
hλehz0/2

)
. (29)

Recalling the Wronskian relationship Wz[Jν(z),H(1)
ν (z)] = 2i/(πz), the solution for C1 and C2 is

C1 = −iπJν

(
λehz0/2

)
/h C2 = −iπH(1)

ν

(
λehz0/2

)
/h. (30)

GÂ(x, y, z + z0, z0) is found by performing the inverse Fourier transforms, which in cylindrical coordinates are

GÂ(x, y, z + z0, z0) =
1

4π2

∫ ∞

0

∫ 2π

0

dkρdαkρe
ikρρ cos(φ−α)GÂ(kρ, α, z + z0, z0) (31)

= − i

2h

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λeh(z+z0)/2µ(−z)

+λehz0/2µ(z)
]
H(1)

ν

[
λeh(z+z0)/2µ(z) + λehz0/2µ(−z)

]
, (32)

where µ(z) is the Heaviside step function. Therefore GÂ(r, z0) is given by

GÂ(r, z0) = − i

2h

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λehz/2µ(z0 − z)

+λehz0/2µ(z − z0)
]
H(1)

ν

[
λehz/2µ(z − z0) + λehz0/2µ(z0 − z)

]
. (33)

We find A by integrating GÂ(r, z0) over the source −µ0Ĵs and transforming Â to A using Equation (23).

5. Magnetoquasistatic Solution Example
We consider, as an analytically tractable example, the response to a current sheet

Js = x̂Kδ(z), (34)
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where K is a surface current density. The response for a component of Â is found as follows

Â = −µ0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dr0Kδ(z0)GA′(r, z0) (35)

=
iKµ0

2h

∫ ∞

0

∫ 2π

0

dρ dφρ

∫ ∞

0

dkρkρJ0(kρρ)Jν

[
λehz/2µ(−z) + λµ(z)

]
H(1)

ν

[
λehz/2µ(z) + λµ(−z)

]
(36)

=
iπKµ0

h

∫ ∞

0

dkρδ(kρ)Jν

[
λehz/2µ(−z) + λµ(z)

]
H(1)

ν

[
λehz/2µ(z) + λµ(−z)

]
(37)

=
iπKµ0

h
J0

[
λehz/2µ(−z) + λµ(z)

]
H

(1)
0

[
λehz/2µ(z) + λµ(−z)

]
. (38)

The x component of the conduction current iωσ·A is shown in Fig. 2. The upper cutoff of the conduction
current distribution results from the exponential increase in magnetic diffusion time with altitude, and the
lower cutoff arises from the exponential decrease in conductivity.

Figure 2: Magnetoquasistatic conduction current distributions. Solid line: 1/h = 2.5 km, 1/
√

ωµ0σp = 100 km,
σP = σH . Dashed line: 1/h = 5.0 km, 1/

√
ωµ0σp = 100 km, σP = σH .

6. Conclusion
This work has determined the response of inhomogeneous, anisotropic media to conductivity perturbations

in the static and magnetoquasistatic limits. The responses have been characterized as Green’s functions, which
can provide the response current distribution if the source currents are known a priori. Some simple source
currents have been considered here. More discussion of ionospheric source currents can be found in [1].
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