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Abstract— Aperture coupled microstrip patch antennas (ACMPA) are special class of mi-
crostrip antennas with high gain and wide impedance bandwidth. These antennas differ from
other microstrip antennas with their feeding structure of the radiating patch element. Input
signal couples to the radiating patch through the aperture that exists on the ground plane of
the microstrip feedline. These special antennas are multilayer stacked type of antennas with so
many design variables that will affect the antenna performance. This paper presents the design
and optimization procedure of ACMPA while taking care of all possible design variables and
parameters to get the highest possible antenna gain and minimum VSWR.

1. INTRODUCTION

Microstrip antennas (MSA) are one of the most popular antenna types which were first produced
by Deschamps [1]. Because of their low profile and conformal structure, they have been widely
used in wireless, aerospace, vehicular and other areas where large antennas are not practical to use.
Among several advantages in application, MSAs suffers from major drawbacks such as low gain and
narrow impedance bandwidth. In 80s, Pozar [2, 3] invented the multilayer configuration which was
named Aperture Coupled Microstrip Patch Antenna. This new microstrip antenna demonstrates
improvement on the impedance bandwidth from 5% to 50% and 4-5 dBi gain enhancement. Due to
their structural complexity, it is challenging job to get the expected gain and bandwidth improve-
ments. Therefore a well planned optimization process needs to be performed to get the highest
possible antenna gain while having minimum VSWR at the antenna input terminal.

A powerful optimizer is implemented with MATLAB optimization toolbox which runs HFSS
and collects data via HFSS Script. In this paper, the optimization process is presented step by
step from the initial settings of design parameters; variables, bounds on variables, constraint and
objectives, to the final optimized results.

2. ANTENNA OPTIMIZATION SETUP

The optimization is performed for designing the ACMPA with highest possible gain and minimum
VSWR, while keeping the gain above some lower limit (8 dBi), VSWR below the upper limit (1.5)
without exceeding the maximum allowed antenna dimensions (10cm x 10cm X 2.5cm).

Next step in optimization is separating the design parameters which are always constant during
the optimization from the design variables that are going to be changed. There are several design
parameters and variables of double layer ACMPA as shown in Figure 1. There are several factors
that affect the performance of ACMPA such as length of tuning stub, patch dimensions, aperture
length and width, relative location of the aperture w.r.t to the patch, shape of coupling aperture,
antenna substrate properties, height of each stacked layers from the ground plane, reflector height,
thickness of the metal layers on the dielectric materials. The more the number of variables, the
slower the optimization process. Thus, we need to decrease the number of variables and set some
variables constant and accept them as parameters.

In our ACMPA example, ROGERS 4003C is used as a dielectric material, so the relative dielec-
tric permittivity e, (3.38), substrate height (0.81 mm), metal layer thickness (17 um), tangential
loss (0.0027) are all constant. Preliminary simulation demonstrates that reflector height should
be around 8 mm, and the radiating patch needs to be placed 13.2mm above the aperture plane.
Impedance of the microstrip feedline should be 50-€2, so the feedline width (1.78 mm) is constant.
Effect of aperture width is negligible and it is fixed at 2 mm.

There are four geometric variables which are highly effective on antenna performance after
setting up the optimization parameters. The stub length (Ls) is used to tune the excess reactance
of the aperture coupled antenna. Antenna performance is very sensitive to the variations of stub
length. The radiating patch length (L,) determines the resonant frequency of the antenna and
the width (W,) affects the resonant resistance of the antenna. The wider patch results the lower
resonant resistance. The aperture length (L,) mainly determines the coupling level of the input
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signal to the radiating patch, so it has direct effect on the resonant resistance. As L, increases,
coupling of the input signal increases and as a result the resonant frequency increases. Upper
bounds for all those variables come from the size of the surrounding metal cavity.

Constraints of the optimization and the main objective should be clearly defined before starting
the optimization. According to the formal definition of the optimization problem, we need to
maximize gain and minimize VSWR while the gain is above 8 dBi (1) and VSWR is below 1.5 (2).
Multi-objective design is little bit tricky. The antenna gain is simply related with the patch area
however VSWR depends on all four parameters, therefore we keep minimum VSWR as the only
objective of the optimization (3). In (1), (2) and (3); & is the vector includes variables, p is
parameter vector, f; simulation frequencies and \; is the weighting coefficient.

—Gain (Z, p, fi) +8.0 <0 Vf; such that 2.2GHz < f; < 2.4GHz (1)
VSWR (Z, p, fi) — 1.5 <0 Vf; such that 2.2GHz < f; < 2.4GHz (2)

min {J (7, 5)} = min {Zj A (VSWR(Z, 7 fi) — 1)} where 3" n=1  (3)

Here, antenna optimization is done with MATLAB optimization toolbox instead of using other
commercial EM Design tools. MATLAB runs the HFSS via scripts, takes the output data (VSWR,
Gain) from the HFSS, processes them according to the formulas which are based on gradient based
optimization, checks whether any constraint violation and finishes the optimization after couple
of iterations and function evaluations. The advantage of this method is that during optimization,
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designer will able to see and control the optimization process. Additionally, MATLAB did not stop
until user defined criteria are met which is not the case in other EM Design Tools.

3. OPTIMIZATION RESULT

Performance of the optimization is directly affected by the weighting coefficients. Initially, weighting
coefficient at 2.3 GHz was maximum and gradually decreases as going to 2.2 and 2.4 GHz. This
configuration worked pretty well in the neighborhood of the center frequency but VSWR exceeds
1.5 around the corner frequencies. Then all coefficients are equally weighted and the results get
better.

In the first optimization trial, the lower and upper bounds of the design variables are relatively
close. For instance, the lower bound of design variables is &y, : [Ls Lo Ly, Wp] = [1 2 2 2] and upper
bound is Zp = [45 90 90 90]. The initial design vector is Zp = [30 80 70 70]. The initial value of the
objective function J(z,p) is 105.67 and the maximum constraint violation is 12.70. After 27 itera-
tion and 218 function evaluations J(zyps, p) = 0.096 and the maximum constraint violation is 0.0132
only at one frequency where the optimum design vector is o, = [19.6322 73.4904 40.4162 78.4580].

4. SENSITIVITY ANALYSIS

The next step in optimization is finding dependency of the design problem on the design variables
at the optimum point. Ideally, the optimum design should not be so sensitive to the small variation
on the optimal values. For this purpose, the sensitivity of the VSWR and the antenna gain to the
all design variables at 2.3 GHz in the £10% range of the optimal values are performed and depicted
from Figure 5 to Figure 12. The rate of change of VSWR and the gain is close to zero in the close
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proximity of the optimum values, so the optimal design is not sensitive to the variation on the final
design vector which should be the case.

5. CONCLUSION

The optimization of the ACMPA is explained step by step with the details and then sensitivity
analysis performed on the optimal design vector. The optimization process is developed and final-
ized after several trial and errors. During these trial and errors, the importance of the weighting
coefficients, upper and lower bounds on the design variables are observed. The constraints and
the objective should be well defined and powerful. Sensitivity analyses are performed to see the
dependency of the optimal antenna performance around the neighborhood of the optimal design
variables. Results depict that final design is stable at the optimal values.
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Use of Attachment Functions in the Moment Method for Analysis of
Planar Microstrip Structures

O. Nejla and T. Aguili
SysCom Laboratory, Electrical Engineering Department, Engineer School of Tunis, Tunisia

Abstract— In this work, we propose a solution to deal with the problem of the errors intro-
duced by the presence of discontinuities in planar microstrip circuits in computing some physical
quantities, like the distribution of the current, by the moment method (MoM).

This approach combines the Moment Method with the generalized equivalent circuit method to
analyze a planar circuit. The interest of the method is the use of the attachment functions in
the base of trial functions in the moment method, generally one or two functions by interface.
In order to assess its efficiency, the proposed method is developed for analyzing discontinuities
in a rectangular microstrip antenna. To achieve this purpose, the current traveling on the feed
line toward the patch edge is calculated and the coupling coefficient of a rectangular microstrip

antenna array in H-plane configuration is investigated. The convergence study of the matrix in
TE and TM mode is highlighted.

1. INTRODUCTION

Among the available numerical techniques, the Method of Moments is a very efficient for the
modeling of planar circuits like micro-strip antenna [1, 2].

When adopting this technique, a common issue is related to the proper choice of test functions
and the number of basis functions in order to guarantee the convergence of algorithm with a reliable
result [3]. The developed method consists in determining the system matrix from the equivalent
diagram then make projections of modes on the basis of trial functions in which we use attachment
functions.

2. STUDIED STRUCTURE

The studied circuit of the first part, as described in Figure 1 and which parameters are summarized
in Table 1, is composed of a rectangular microstrip radiating element (A) and a microstrip line
(L) excited by a voltage source Fy placed on the circuit plane. This structure is embedded in a
metallic box which its electric walls are considered too far from the circuit to avoid all interactions.
In the second part, we place a second patch antenna identical to the first in H plane configuration
to study the mutual coupling phenomena. The used frequency in both cases is f = 4.9 GHz.
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Figure 1: A rectangular microstrip antenna.

3. THEORETICOL DEVELOPMENT: CASE OF A RECTANGULAR MICROSTRIP
ANTENNA

The method of generalized equivalent circuits used to implement an electromagnetic problems
described by Maxwell’s equations in an electrical problem [4]. On the plane of the circuit, the
electric tangential field is related to the total current density by the impedance operator.

Er=27J (1)
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Table 1: Dimensions of the rectangular microstrip antenna.

Patch Feed line | Voltage Source Box
Length (mm) | L =22.76 | [=5.69 ¢ =0.7863 a =200
Width (mm) | W =599 | d=2.812 d=2.812 b =100

Z is a projection operator on the TE and fI'M of the empty waveguide. The solution of the

problem consists in satisfying the following boundary conditions:

ET = 0 on the metal and J = 0 on the insulator.

We use an arbitrary excitation Eo on the micro-strip line subregion. On the plane of the strip,

let J; v be the current density on the metal region. The planar microstrip antenna can be modeled
with equivalent diagram as shown in Figure 2:

— N
A T2
= -
E1 Eo E;
Y: Ys
- —
E Jum

Figure 2: Equivalent diagram of a rectangular microstrip antenna.

Y; and Y, are the admittance operator: Z = (171 + ?2)*1, Ey defined on (M), Ey = Viéo, &
is the source function of amplitude V. Let gi be the trial basis functions on the metallic part of
the structure. The current density is then described with test functions and expanded on a set

of basis functions. This yields the set of linear Equation (2). Thus, we obtain a matrix equation:
AX = B (3).

> (Gi 2G5)X; = (i, Go)Vi (2)
[Arr] [Aral  (G1, ZGarr) X1 (71, Eo)

A=| [Aar]  [Aad] . =] (3)
(GarT, Z31) ... {Garr, Zgarr)| XN (gn, Eo)

For the study of rectangular planar microstrip antenna, it seems natural to choose the relative
solutions of the transverse electric field of a metallic rectangular waveguide as basic functions [5, 6].

The trial functions, as shown in Figure 3, are chosen for our case, so to better describe the
current as it passes from one area to another for complex structures composed by several fields
metal (assumed rectangular) and this by introducing functions called attachments [3].
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Figure 4: Equivalent diagram of a rectangular microsstrip antenna.

4. THEORETICOL DEVELOPMENT: CASE OF A RECTANGULAR MICROSTRIP
ANTENNA ARRAY

We extend the approach detailed above. The microstrip antenna array can be modeled by an
equivalent diagram as described in Figure 4. The obtained matrix system is:

()= (3 &) (8 2) () ”

¢ = 9 = 1
A1: <f017gl >7"'7<f01agn>

t — 3 = 3
AQ = |:< f027gl >, < f027gn >:|
where
M = <y11 y12> (5)
Y21 Y22

- =

L qvoad 1 51
yi11(i,j) =< g;, Y 1g; >=<g;,Zg; >
. T v 1 53
yi2(i,j) =< g;, Y 1gi >=<g;,Zgj >
. S 1 S 51
y(i,j) =< g;, Y lg; >=<g;,Zg; >
. TR 3 53
y2(i,j) =< g;, Y ~tg; >=<g;,Zgj >

Y is the admittance matrix. fo; (respectively fo2) is the unit vector of the first (respectively second)
source. g¥ is a test function on a patch antenna (k € [1, 2]).

5. NUMERICAL RESULTS

A computer program has been coded in MATLAB language for the first part and in JAVA language
for the second part due to the density of the matrix. As shown in Figure 5, according OX,
component of J, noted that Jx, vanishes on edges in the x-direction and reached the peak on the
transverse edges before reaching quick minimum amplitude (zero) on the dielectric. We Note all
the same small oscillations preceding the cancellation of current (Gibbs effect).
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Furthermore, by awarding the fact that the current has amplitude nonzero on the interface
between the line and the antenna, we can notice the important role of the function of attachment.

The study of convergence in single mode TE and TM alone in case of a microstrip antenna
array, as shown in Figure 6, has led the conclusion as designating TM mode role in the structure.
Indeed, the number of modes TM needed to describe all of the modes propagating in the structure
is too larger than the TE mode. This characteristic reflects the capacitive aspect of the structures
studied.

Note that the higher the number of test functions is used, the greater should be the number of
modes to obtain a matrix that is well conditioned.
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At convergence (in modes and trial functions), we obtain a reasonable approximation of the
coupling coefficient at f = 4.9 GHz. It should be noted, according to Figure 7, that convergence
is achieved for 66 sinusoidal test functions and 89888 modes. We can then conclude that Sis =
—11.42dB. The structure is simulated by SONNET and the found value is S5 = —11.39dB.

6. CONCLUSION

Two structures have been studied. It was shown that the boundaries conditions were respected
in the microstrip antenna. At the discontinuity between the feed line and the patch, the current
is not zero which highlight the important role of attachment function. It should be noted that
measured results, in the second structure, were compared with measured ones and they improve
the effectiveness of the method.
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GA Optimization for Compact Broadband PIFA Application

Wen Pan and Quanyuan Feng
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Abstract— In this paper, a Planar Inverted-F antenna (PIFA) applicable to the digital broad-
casting service such as DMB and DVB-H is presented. Between the top plate and ground one
part of the substrate is ferrite and the remaining is air-filled. This combined substrate structure
as well as the utilization of T-shaped ground plane remarkably broadens the bandwidth and
minimizes the antenna size. The optimizer by Genetic Algorithms (GA) cooperated with High
Frequency Structure Simulator (HFSS) is adopted to obtain the optimal volume and shape of
the PIFA. The mixed optimization program gives the scheme to cut out irregularly shaped slot
windows on the patch which makes the Return Loss of the antenna proposed achieve —51.25dB
at the operation frequency. Finally, the antenna is fixed on 23 mm length, 5 mm width, 1 mm
thick, over 72% reduction in the size compared with the conventional PIFA, relative bandwidth
is 70% at 0.7 GHz, and VSWR is 1.05.

1. INTRODUCTION

Recently, the demand for miniaturization, multi-band and broadband antennas have been increased
along with the development of multi-system and downsizing handset. For the volume of the antenna
is inversely proportional to the desired frequency, miniaturization is a crucial problem to the digital
broadcasting services such as DMB and DVB-H which is assigned from 170 ~ 800 MHz. This
frequency range is not only relatively lower, but also has a wideband. The attempt to achieve both
miniaturization and broadband antenna is manifest.

The hexagonal ferrite substrate is effective for the miniaturization of the antenna and slots on
both radiating patch and ground plane can be adopted to realize the miniaturization and broadband
performance. But the hexagonal ferrite will put a strangle hold on the electromagnetic field and
reduce the bandwidth, which means using the hexagonal ferrite substrate would present contradic-
tion between miniaturization and broadband. This paper proposes miniaturization and broadband
PIFA which overcomes this problem. Meanwhile, the optimizer by GA cooperated with HFSS is
adopted to get the antenna excellent performance by cut off erose slot windows on the top patch.

2. REALIZATION OF THE OPTIMIZER COMBINED GA AND HFSS

Adding slots can change current distribution on radiating patch and introduce equivalent induc-
tance and capacitance. These create different resonance modes close to each other [1] which can
broaden the bandwidth and reduce the operational frequency of a PIFA without additional element.
However, it is hard to analyze where and what shape the slots should be to make the antenna best,
this also has become an important application in GA optimization for antenna.

This paper adopts the basic GA [2] and creates GA main program by MATLAB. The subpro-
gram which creates VB script with MATLAB to call HFSS [3] calculates the cost function by the
simulation result to get the fitness for GA. According to the way in which HFSS builds antenna
3D model, this paper proposes a novel program without dividing the radiating patch into meshes
which is the method used to optimize antenna performance with erose slots by GA. The program
flow chart is shown in Figure 1. The subprogram builds a intact antenna patch in HFSS and a
‘mold’ of a rectangle shown in Figure 2 serving as a basic cell. With a given ‘mold’ size (dzx, dy),
the chromosome of each individual gives a location (start point), according to which the ‘mold
will be cutoff from the patch one at a time. After several cuts, antenna will get an optimal slot.
There should be a maximal cut number n that the ‘mold’ can be cut. When exceed the limit n and
not achieve the optimal result, a new intact patch should be built for anther round. Note that the
chromosome which denotes the coordinates of start point is expressed by binary string, so the start
points are discrete. Make sure that the size of ‘mold’ is larger than the interval between nearest
start points and not the integer times in both x and y axis, which can guarantee the avoidance of
connection at a vertex. The mixed optimization program could show the scheme to cut off proper
slot on the patch.

The GA optimizes the patch by removing several square metal subsections from the patch region.
Design the cost function (1) using the method below [4]. S11 of three frequencies are selected in
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Table 1: Parameter set for GA optimizer.

5 < [511] <20
’SH’ > 20
’SH’ <5

Population 32 Individuals
Crossover 80%
Mutation 20%

Generation 64

Max-cut-number (n) 15

667

be optimized. Table 1 illustrates the parameter set for GA
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3. PIFA CONFIGURATION AND RESULT OF OPTIMIZATION

This paper proposes a miniaturization and broadband PIFA based on the investigation of T-shaped
ground plane PIFA [1]. As shown in Figure 3, The antenna configuration before optimization
has a regular square patch 5 x 23 mm above a finite ground plane 92 x 125mm by 1 mm. Two
rectangles 45.4 x 15 are cutoff from ground plane. It is known that the dielectric material with
permittivity € and permeability p can be applied to miniaturize antenna. For the size of antenna
is directly proportional to \/%7, hexagonal ferrite with ¢ = 16.5, © = 2.8 make the wavelength

shorter, which is effective for the miniaturization of the antenna. Then, to solve the contradiction
between miniaturization and broadband described in the previous section, the substrate between
the top plate and ground is partly filled with hexagonal ferrite and the remaining is air-filled. The
air substrate reduces the bandage of hexagonal ferrite to electromagnetic field. Meanwhile, the
combined substrate acting as tapered line impedance-matching network in the transmission line
theory broadens the bandwidth remarkably. Figure 4 shows the sequence by which the ‘mold’ is
cutoff and the top patch configuration of the PIFA after optimization. The coordinates of start
points of the ‘mold’ (0.5x2mm) given by 9 individuals of the 13th generation are listed in Table 2.

Table 2: The coordinate list of start points of the ‘mold’ cut from the patch.

Mold-1 | X: —0.8 Y:66.1 | Mold-6 | X: —1.8 Y:724
Mold-2 | X: 0.1 Y: 70.7 | Mold-7 | X: —1.7 Y:64.3
Mold-3 | X: 1.2 Y: 74.1 | Mold-8 | X: 0.1 Y: 68.3
Mold-4 | X: 0.9 Y: 76.5 | Mold-9 | X: 0.4 Y: 66.6
Mold-5 | X: —2.3 Y: 63.7

The results of parameter S1; and VSWR of the antenna before and after optimized by the
proposed method are presented in Figure 5 and Figure 6. Compared with the conventional PIFA,
the optimized antenna is over 72% reduction in size, the relative bandwidth is 70% at 0.7 GHz, the
VSWR is 1.05, and the S71 can achieve —51.25dB.

Short plane

The top patch \

................
e e e

j (Feed point

Ground plane Hexagonal ferrite

059
L1
L2 §
L3
X
o

Figure 3: The antenna configuration before opti-  Figure 4: The sequence mold cutting sequence and
mization. the top patch configuration of the PIFA after opti-

mization.
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Figure 5: The VSWR of the PIFA. Figure 6: The S11 of the PIFA.

4. CONCLUSION

This paper proposed a method combined GA and HFSS to optimize PIFA with erose slots. This
method is proved to be effective and finally the optimized PIFA reduces over 72% in size compared
with the conventional PIFA, relative bandwidth is 70% at 0.7 GHz.
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Abstract— In this paper, numerical method for determining the capacitance of a conducting
oblate spheroidal shell has been established. An explicit finite difference technique for solving
Laplace’s equation in oblate spheroidal coordinates systems for an axially symmetric geometry
has been developed. An ingenious strategy was created to overcome the singularity problems
encountered in the oblate spheroids. Consequently, the finite difference results were used to
compute the capacitance of the spheroidal shell in an easy to understand manner. This was
achieved using the Dirichlet boundary conditions on the oblate spheroidal surfaces. The shell
capacitance results obtained did fall in the same range with those obtained using analytical
method.

1. INTRODUCTION

The choice of a particular coordinate system is motivated by the geometrical form of the body
under study and can result in a considerably simplified analysis of the problem [1].

In other words, to express boundary conditions in a reasonably simple way, one must have
coordinate surfaces that fit the physical boundaries of the problem [2,3]. In considering heat flow
in a bar of elliptic cross section, for instance, one uses elliptic-cylindrical coordinates while in
calculating the effect of introducing a dielectric sphere into an electric field, one uses spherical
coordinates. Thus the range of field problems that can be handled effectively by an engineer or
physicist will depend upon the number of coordinate systems with which the person is familiar [3].

A spheroid is obtained by rotating an ellipse about one of its principal axes. If the ellipse is
rotated about its major axis, a prolate spheroid is formed, while an oblate spheroid is formed if
the ellipse is rotated about its minor axis. However, if the generating ellipse is a circle, a sphere
is formed. Spheroidal coordinates eliminate the cumbersome mathematical expressions obtained
with rectangular coordinates and allow the simple determination of areas and volume. They offer
an obvious generalization of physical processes described in spherical coordinate systems and in
addition yield the extremely interesting limiting cases of the infinitely thin, finite “wire” and the
infinitely thin circular disk [4]. For instance, spheroidal antennas can be used to model a variety
of different antenna shapes, from wire antennas, through cylindrical antennas, to disk antennas.
Subsequently, for antennas that are long and thin, prolate spheroidal coordinates fit the geometry
more closely while oblate spheroids should represent antennas in the shape of a disk [5, 6].

The computation of the shell capacitance would help in future research efforts at finding the
characteristic impedance and phase velocity in spheroidal shell conductors just like it has already
been done for microstrip lines [7]. The authors have been able to compute the capacitance in
conducting prolate spheroidal shells both analytically and numerically in their previous work [8].
This research work therefore aims at the computation of the capacitance in a conducting oblate
spheroidal shell.

2. OBLATE SPHEROIDAL COORDINATE SYSTEMS

The oblate spheroidal coordinate system is generated by taking an orthogonal family of confocal
ellipses and hyperbolas and rotating it about the minor axis of the ellipses. The resulting coordinate
surfaces are oblate spheroids, half planes and hyperboloids of one sheet [9]. Oblate spheroidal
coordinates have a circular disc as the degenerate element of the system; the two foci of the 2D
ellipse form a ring when rotated about the minor axis of the ellipse [10].

The oblate spheroidal coordinates are related to the rectangular coordinates shown in Equa-

tions (1)—(3).
x = acosh{sinmncos ¢ (1)
y = acosh¢sinnsin¢g (2)
z = asinh cosn (3)
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where a is the focal length of the oblate spheroid.
The respective scale factor for each of the three coordinates (&, n, ¢) is

he = ay/sinh? ¢ +sin?p (4)
h, = ay/sinh? € + sin® 7 (5)

he = acosh§cosn (6)

3. NUMERICAL COMPUTATION OF SHELL CAPACITANCE

3.1. Finite Difference Solution of Oblate Spheroid Laplace’s Equation

The numerical solution of differential problems defined on general-shape, three-dimensional do-
mains nowadays still presents difficulties, in particular if the boundary conditions involve the nor-
mal derivative of the solution. Several recent articles and transactions papers have examined the
application of a variety of field solution techniques to electromagnetic problems [11-18]. In this
research work, we use the simplest and oldest of all digital schemes — fully explicit finite-difference
approximation of partial derivatives to compute the oblate spheroidal shell capacitance. The choice
was based on its simplicity over other complicated schemes which make it easier to program from
scratch. It has lesser probability to contain elusive errors. That the computation time may be
lengthy is not seen as a draw back because nowadays “computer time” is inordinately cheaper than
“people time” [19].
The Laplacian equation in oblate spheroidal coordinate systems is

2
1 (Sec h2€ tan® n + sec? 1) tanh? §) g;g
0=VV=(—g—"]- 7
(sinh2§+sin277> +82—V—1—t §8l+827v_t oV @
¢ o€ “on

The term outside the bracket may be ignored. Also the first term inside bracket may be ignored
due to the rotational symmetry about the vertical (z) axis [19]. Therefore, (7) reduces to

o0*V oV 62V ov

tanhé—+ —5 —t — =0 8

ez Htanh&ge 4 5y —tann g (8)

This equation is found to govern the distribution of potential. Equation (8) was discretized by

finite difference method and the respective mesh sizes in each of the two coordinates are A¢ and
An. Consequently, the sampling points are defined by the following coordinate values [20];

E=iAE, i=0,1,2,3,... o)
n=jAn, j=0,1,23, ...

The difference equation is developed by expanding the potential at the points ¢, j in Taylor’s
series and deriving expressions for the second partial derivative in any direction, which are substi-
tuted into the transformed equation in (8) [21]. The finite difference equation in oblate spheroidal
coordinates is shown in (10).

Figure 1 shows one-quarter of constant oblate spheroidal surfaces. The figure exhibits symmetry
with respect to 7 coordinate. Therefore, the range of 0 < n < 7 is used for simulation. Subsequently,
the results computed for capacitance is multiplied by four.

V(i,j) = 05 [ L, ]
(A2~ (An)?

, ) 1 tanh(iA¢€) , , 1 tanh(1A¢)
Vi+1.j) [(A§)2 T oAe ] tVE-19) [(Aé)2 T2 ] (10)
- 1 tan(ny) . 1 tan(ny)
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n=constant

=90°

&

2‘:‘“

Figure 1: Oblate Spheroidal surface path used in computing the charge enclosed.

The factor 4 is necessary because we are working on only one-quarter of the cross section |7, 8].
Two lines of symmetries are encountered in this range of 1. They are n = 0° and n = 90°. On
these lines of symmetries, the Neumann boundary condition %—‘; = 0 is imposed [7].

Therefore, the finite difference equations in the two lines of symmetries become:

Along n =90°, j = Jmax,

1
V (i, jmax) = 0.5

e
V(i + 1, jmax) [(Alg)g . tan;X?O]
F V(i 1, ma) [ ( Alf)Q - tan;f? 5)} 2Vl e — 1) [(Alnﬁ}

Also along n =0°, j =0,

) 1 anh(7A
1 V(Z+1,0) |:(A£)2 i 225 6):|
V(i,0) =05 1 1 ‘ ) 1 tanh(iA€) , 1 (12)
[(A@? * (M)Q} V=10 [(Af)? ~ T one ] TV [(Am?}

Nimax and 7y are obtained by substituting j = 90° and j = 0° into Equation (11) respectively.
Equations (10)—(12) are used for the finite difference simulation.

3.2. Effects of Polar Singularities on Potential Distribution

The imposition of the derivative condition (%—‘; = 0) along the lines of symmetries helped to

eliminate the tan(n) factor in (10) which otherwise could have generated ‘infinity’ especially along
line n = 90°. This strategy helps to obtain uniform potential distribution on equipotential surfaces
which ultimately enhances the accuracy of the spheroidal shell capacitance results. The mesh sizes
used were A§ = 0.05 and An =75 respectively, and the shell radial coordinate and potential values
ranged from (£, = 1.0, Vi1 = 0) to (§&2 = 2.0, Vo = 100).

Prior to implementing the singularity resolution strategies that gave the uniform potential distri-
butions, the potential values obtained were infinitely large, randomly non-uniform, and sometimes
absolutely infinite.

3.3. Shell Capacitance Computation

Based on the results obtained from the simulation, the total charge (Q) enclosed by the oblate
spheroidal shell can be calculated. To find @, we apply Gauss’s law to a closed surface S enclosing
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the total electric fluxes as follows

?{D ds = fsgvan dsa, = 5}1{ —ds (13)

The differential normal surface area is calculated with the aid of the scale factors as shown in

ds = hghydpdnae = a?y/sinh? € + sin® n cosh € cos ndodnae (14)

Therefore, the charge @) can be obtained from (13) as shown in (14)—(18).

Q=ad’c // 88‘5/ (sinh2 £o + sin? 77)0'5 - cosh &y cos ndgdn (15)

where £ = &; is the dotted path shown in Fig. 1.
Solving (18) we have,

Q= 277@26/ %‘g (sinh2 &o + sin? 77)0'5 - (cosh &y cos ndn) (16)

On further simplification, (16) becomes

V, =V
pA§ K (sinh2 &o + sin? np)o.s - (cosh & cos n, An)
Q = 2ma’e (17)
VQ — VL . 2 .. 92 0.5
+ At (sinh® & + sin®ng) " - (cosh & cosngAn) +
Equation (17) is put in a more compact form as
Q= 27ra26— Z { (V, — Vi) (sinh? & + sin® np)oﬂ - (cosh & cos ) (18)

k—O

It should be noted again that Fig. 1 represents a quarter of the spheroids. The charge is computed by
adding all the net potentials on the nodes of the constant surface spheroid. This implies subtracting
the respective potential on the corresponding adjacent nodes P, Q, R, S, T, etc. of constant surface
&2, and the nodes K, L, M, N, O, etc. of constant surface £ in Fig. 1. The net potential so
obtained is consequently employed in (18) to compute the charge. The charge is subsequently used
to compute the capacitance as shown in (19).

4Q

C:
Va

(19)

Vg4 represents the potential difference between the spheroidal shell’s inner and outer surfaces (V; =
100V in Fig. 1).

The equation for the analytical solution for oblate spheroidal conducting shell capacitance com-
putation is

4dmae
€= [9d(&2) — gd(&1)] (20)

where gd() denoting the Gudermannian function [22] is represented as

9d(€) = sin™ " (tanh(¢)) (21)

4. RESULTS

The computation results obtained from both numerical and analytical approaches are shown in
Table 1. Six different sample results each typifying oblate spheroidal conducting shell formed
between two different spheroidal surfaces £ and & were tabulated. The oblate spheroidal shells
used have focal length of 0.85. The values of the radial coordinate used for this study as reflected
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Table 1: Oblate spheroidal shell capacitance.

Shell Shell
Surface surface Capacitance Capacitance
E=6 | =6 (nF) (uF)
Exact FD
0.2 0.4 0.49499 0.40989
0.2 0.5 0.33572 0.27916
0.4 0.8 0.28108 0.21549
0.4 1.0 0.19867 0.14907
0.7 1.3 0.24269 0.21349
1.0 2.0 0.21691 0.17829

Table 2: Effects of mesh size A¢ and An on numerical results accuracy.

Shell Shell
At | Ay Capacitance Capacitance

(nF) (nF)

Exact FD
05 | & 0.21691 0.94589
0.25 | &5 0.21691 0.30154
0.1 | & 0.21691 0.17829
0.05 | &5 0.21691 0.18331
0.05 | 3% 0.21691 0.22509
0.05 | &= 0.21691 0.22447
0.05 | 2 0.21691 0.22225

in Table 2 were chosen randomly. Table 2 shows the effects of the changes of the respective mesh
size A and An (representing the two coordinates) on the accuracy of the numerical computation
results. This was implemented by varying one mesh size at a time while the other mesh size was
kept constant and vice versa. Consequently, An was held constant in rows 1-4, while A¢ was held
constant in rows 4-8. The oblate spheroidal shell’s inner and outer surfaces were kept constant at
& =1 and & = 2 respectively for the study in Table 2.

It can be seen from Table 2 that decreasing the mesh size of either coordinates lead to better
accuracy. However, on a closer look, changes in the mesh size of radial coordinate £ have more
impact on the accuracy of the numerical computation results than changes in the mesh size of
angular coordinate 7.

5. CONCLUSION

Numerical method of computing oblate spheroidal shell capacitance has been implemented. The
problems posed by the presence of singularities on the pole regions of the oblate spheroids were
successfully tackled. The numerical results approximate that of the analytical approach as expected.
Also, the effects of the mesh sizes on the accuracy of the numerical computation results investigated
showed that changes in the mesh size of the equivalent radial coordinate & affect the accuracy of
the numerical computation results more than changes in the mesh size of the angular coordinate 7.

REFERENCES

1. De Lima, A. G. B. and S. A. Nebra, “Theoretical analysis of the diffusion process inside prolate
spheroidal solids,” Journal of Drying Technology, Vol. 18, No. 1 & 2, 21-48, 2000.

2. Ricciardi, G. F. and W. L. Stutzman, “A near-field to far-field transformation for spheroidal
geometry utilizing an eigenfunctions expansion,” IEEE Trans. Antennas and Propagation,
Vol. 52, No. 12, 3337-3349, Dec. 2004.



Progress In Electromagnetics Research Symposium Proceedings, Cambridge, USA, July 5-8, 2010 675

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Moon, P. and D. E. Spencer, Field Theory Handbook including Coordinate Systems, Differential

FEquations and their Solutions, 2nd Edition, 1-31, Springer-Verlag, New York, 1971.
Hodge, D. B., “Eigenvalues and eigenfunctions of the spheroidal wave equation,” Journal of
Mathematical Physics, Vol. 11, No. 8, 2308-2312, Aug. 1970.

. Li, L.-W., M.-S. Leong, T.-S. Yeo, and Y.-B. Gan, “Electromagnetic radiation from a prolate

spheroidal antenna enclosed in a confocal spheroidal radome,” IEEE Trans. Antennas and
Propagation, Vol. 50, No. 11, 1525-2402, Nov. 2002.

. Adams, R. C. and P. M. Hansen, “Evaluation of the quality factor of an electrically small

antenna in spheroidal coordinates,” IEFEE Int. Symposium on Antennas and Propagation, 6001—
6002, 2007.

Sadiku, M. N. O., Elements of Electromagnetics, 4th Edition, 740-748, Oxford University
Press, New York, 2007.

. Momoh, O. D., M. N. O. Sadiku, and C. M. Akujuobi, “Analytical and numerical computations

of prolate spheroidal shell capacitance,” Microwave and Optical Technology Letters, Vol. 51,
No. 10, 2361-2365, Oct. 2009.

. Grabner, P., “Electrostatic attitudes of a frequent ophthalmologic bioimplants,” Proc. Int.

ISEM Symp. Nonlinear Electromagnetic Systems, A. J. Moses and A. Basak (Eds.), 358-361,
IOS Press, Cardiff, Wales, UK, Sep. 1996.

Kuhlman, K. L., “Laplace transform analytic element method for transient groundwater flow
simulation,” 85-94, Ph.D. Dissertation, Dept. Hydrology & Water resources, Univ., Arizona,
2008, unpublished.

Davey, K. R. and M. B. Nair, “A Monte Carlo technique for eddy current problems,” IEEFE
Trans. Magnetics, Vol. 29, No. 2, 13761379, March 1993.

Sadiku, M. N. O., C. M. Akujuobi, S. M. Musa, and S. R. Nelatury, “Monte Carlo analysis of
time-dependent cylindrical problems,” Proc. IEEE Southeastcon, 778782, Mar. 2007.
Sadiku, M. N. O., S. O. Ajose, and Z. Fu, “Applying the exodus method to solve Poisson’s
equation,” IEEE Trans. Microwave Theory and Tech., Vol. 42, No. 4, 661-666, 1994.

Sadiku, M. N. O. and C. N. Obiozor, “A comparison of finite difference time-domain (FDTD)
and transmission-line modeling (TLM) methods,” Proc. IEEE Southeastcon, 19-22, Apr. 2000.
Sadiku, M. N. O. and F. A. Peterson, “A comparison of numerical methods for computing
electromagnetic fields,” Proc. IEEE Southeastcon, Vol. 1, 42-47, Apr. 1990.

Hoole, S. R., “Finite element electromagnetic field computation on sequent symmetry 81 par-
allel computer,” IEEE Trans. Magnetics, Vol. 26, No. 2, 837-840, Mar. 1990.

Li, L.-W., M.-S. Yeo, and M.-S. Leong, “Method of moment analysis of EM fields in a mul-
tilayered spheroids radiated by a thin circular loop antenna,” IEEE Trans. Antennas and
Propagation, Vol. 52, No. 9, 2391-2401, Sep. 2004.

Sadiku, M. N. O., C. M. Akujuobi, and R. C. Garcia, “An introduction to wavelets in electro-
magnetics,” IEEE Microwave Magazine, Vol. 6, No. 2, 63-72, Jun. 2005.

Myland, J. C. and K. B. Oldham, “Modeling diffusion to a disk electrode by fully explicit
simulation,” Journal of Electroanalytical Chemistry, Vol. 576, 3563—-362, 2005.

Eide, H. A., et al., “New method for computing expansion coefficients for spheroidal functions,”
Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 63, 191-203, 1999.

Grabner, P., “Electrostatic attitudes of a frequent ophthalmologic bioimplants,” Proc. Int.
ISEM Symp. Nonlinear Electromagnetic Systems, A. J. Moses and A. Basak (Eds.), 358-361,
IOS Press, Cardiff, Wales, UK, Sep. 1996.

Spanier, J. and K. B. Oldham, An Atlas of Functions, Section 33, No. 14, 317-318, Hemisphere
and Springer-Verlag, New York and Berlin, 1987.



676 PIERS Proceedings, Cambridge, USA, July 5-8, 2010

Guided and Leaky Modes of Planar Waveguides: Computation via
High Order Finite Elements and Iterative Methods
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Abstract— Guided and leaky modes of planar dielectric waveguides are eigensolutions of a
singular Sturm-Liouville problem. This paper describes how this problem can be transformed
into a quartic eigenvalue problem, which in turn can be converted into a generalized eigenvalue
problem. Thus standard iterative methods, such as Arnoldi methods, can be used to compute the
spectrum. We show how the shifts in the Arnoldi methods must be selected to obtain convergence
to the dominant modes. In addition, by using high-order finite elements, the resulting solutions
can be made extremely accurate. Numerical examples demonstrate the speed and accuracy as
well as the stability of the method.

1. INTRODUCTION

It is easy to characterize the modes of planar dielectric waveguides by an algebraic equation. There
are numerous papers that discuss numerical methods that are based on finding the roots of the
characteristic function, either by using the argument principle of complex analysis [1-3,11], or by
a continuation method [7]. However, the numerical solution of the equation suffers from numerical
instabilities which are caused by the exponential scaling of the characteristic function. It is well
known that for this reason the standard methods are often unreliable especially if there are many
or thick layers present, if the frequency is large or if there are lossy layers, see, e.g., [5,9,12].

In [12], we presented a new variational formulation of the Sturm-Liouville problem that char-
acterizes the guided and leaky modes. After discretization, the variational form reduces to either
a quadratic or a quartic matrix eigenvalue problem. Solving the eigenvalue problem is numerically
stable, even for waveguides with thick layers or arbitrary index profiles. In [12], we used a low-order
discretization scheme and solved the eigenvalue problem by a direct method. This demonstrated
the general feasibility of the approach, but the convergence of the higher-order modes is slow and
the high cost of the numerical linear algebra limits the applicability to relatively simple structures.

In the present paper we address the slow convergence problem by using piecewise high-order
polynomial finite elements. Furthermore, we employ an iterative eigensolver that is capable to
exploit the sparseness of the finite-element matrices. To ensure that an iterative method converges
to a specific eigenvalue one has to shift the problem such that the selected eigenvalue is dominant.
We will present a strategy for selecting the shift such that all dominant guided and leaky modes
are found. We will conclude with some numerical results that demonstrate the usefulness of our
improved method.

2. VARIATIONAL FORMULATION

In this section, we briefly review the derivation of the variational formulation that characterizes
the modes of a dielectric waveguide. For more details we refer to [12].

We consider an infinite medium where the refractive index n(z) = y/e(z)p is a function of
and we let z be the direction of propagation. In this case the modes are of the form E(x, z,t) =
exp(—iwt + i62)p(z)y (TE wave) or H(z, z,t) = exp(—iwt + i32)¢p(x)y (TM wave). To simplify
notations we only discuss the TE waves, as the treatment of TM waves is completely analogous
and can be found in [12]. The lateral dependence of the mode is given by the function ¢ which
satisfies

¢"(z) + (*n*(z) — B*) ¢(z) =0, =z €R, (1)

see, e.g., [8]. Equation (1) is a singular Sturm-Liouville problem, where the propagation constant (3
is the unknown eigenvalue. The spectrum consists of a discrete part, corresponding to guided modes,
and a continuous part, corresponding to radiation modes. There is a third type of eigensolution,
known as leaky modes. These are unbounded solutions of (1) that radiate energy away from the
stack. For more information on leaky modes in planar waveguides we refer to the recently published
survey articles [6] and [13].
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The refractive index n(z) is a piecewise constant function with discontinuities at x, ...,z and
function value n(x) = n; in the j-th layer. It follows that a mode has the general form

exp(iagpz)d(zo), x < xg
¢(z) = { cos(aj(x — x;))d(x;) + sin(oy(z — 5)) fo;¢'(z5), xj <@ < wjpa, (2)
exp(—iag(z — w))p(xy), x<uzy,

where «; is the lateral propagation constant given by a; = 4 /k;znjz — 32

By considering the exponential form of ¢ in the semi-infinite layers, it follows that the modes
are solutions of the non-standard Sturm-Liouville problem

¢"(x) + (K*n*(x) — 6%) d(z) = 0, x € (0,w), (3)
¢’ (x0) — i (o) = 0, (4)
¢ (x5) +icgd(azy) = 0. (5)

To derive the variational formulation, we first multiply (3) by a test function, use integration by
parts and apply the boundary conditions (4), (5) to obtain

- /0 R /0 Y (R — 52) 06 — iasdle)d(w) — iaoi(zo)d(ze) = 0 (6)

Conceivably, one could discretize (6). However, the result would be a nonlinear eigenvalue problem.
We circumvent this problem by making use of the change of variable suggested by [10].

C:21i<\/k:2n%—62+\//€2n3—62>. (7)

A bit of algebra reveals that

[ &? (62
a0:z<4<—|—g> and aJ:Z(ZLC_C> (8)

where §2 = k2n3 — ang. From the definitions of g, aj we have

k%(n3 +n?) B ad + a?

pr =0 : ©)

If we let g(z) = k* [n%(z) — 3(nd + n?)], we can introduce the bilinear forms

a(t, ¢) = /0 CHE — abe, (10)
0, 8) = D7) d(x) % B(z0) (o). (11)

with these notations the variational formulation of (3) is: Find ¢ and ¢ such that for all test
functions 1

4 2
0 (00) + ¢ o (,0) + Calth,6) + Ca” (,9) + CH(,9) =0 (12)

holds. This is a quartic eigenvalue problem in the variable (. Once the eigenvalues ¢ have been
found, # and be recovered using (8) and (9). If the refractive indices in the semi-infinite layers are
equal, then 62 = 0 and (12) reduces to the quadratic eigenvalue problem.

a (i, ¢) + Cat (¥, ¢) + ¢ (¥, ¢) = 0. (13)
3. DISCRETIZATION AND IMPLEMENTATION

A discretization of (12) or (13) can be obtained by letting the trial and test function be restricted to
a finite dimensional subspace span [¢1, ... @y,]|. This yields the quartic matrix eigenvalue problem:
find ¢ such that

Ao+ CA1 + (P Ay + Az + (M Ay (14)
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is singular. We note these matrices are sparse, since from (11)

2
A = %diag( ~1,0,...,0,1), Az = diag(1,0,...,0,1), (15)
and from (10)
.. 64 .. / / ..
AO(Zvj) = E(@l?@])’ A?(Za]) = (QD'UQD]) - ((I‘Pza (p])a A4(7’a.]) = (SO’L’ 90]) (16)

By using the companion matrix, the quartic eigenvalue problem is converted into an equivalent
generalized eigenvalue problem Az = (Bx, where

I I

I I
I and B = I

—AO —A1 —Ag —A3 A4

A= (17)

Since the matrices involved are sparse and large, the problem is ideally suited for solution by an
iterative method. Iterative methods converge to eigenvalues near the extremes of the spectrum.
However, by introducing the shift o, (17) can be transformed to the equivalent shifted problem

1

Bxr =
o A—o

(A—oB)zx. (18)

An iterative method applied to (18) will produce approximations that converge to the eigenvalues
near ¢. By determining where the eigenvalues of interest are found in the complex {-plane we can
find a good choice of o.

It is known that the eigenvalues of (12) accumulate at ¢ = 0 and ¢ = +ico, see [13]. The (’s near
the accumulation points are not of interest because they lead to a large value of 3. The condition
for a guided mode is that ag and a; are purely imaginary and negative for exponential decay of
the mode in the semi-infinite layers. From (8) it follows that the corresponding (-values are real
and satisfy ¢ > 6/2.

The leaky modes have complex 8 and hence complex (. However, not every complex solution
of (12) will be a leaky modes. Whether a complex mode is leaky or non-physical depends on
the following conditions. For substrate leaky modes kn; < Re() < kng. For full leaky modes
B satisfies Re(8) < kny. See, [4,8]. These conditions restrict the eigenvalue search to certain
portions of the complex ¢ plane. Such regions are depicted in Figure 1. The region labeled R; is
the search region for the guided modes. Ry is the region for the substrate leaky modes, and Rj
is where eigenvalues associated with full leaky modes are to be found. The circle is of radius %,

3(©)

Figure 1: Eigenvalue distribution for a typical quartic eigenvalue problem. Also shown are the search regions
in the complex plane as well as a choice of shifts for the eigenvalue problem.
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where 9§ is defined in the previous section. The outer boundary of Rj3 is given as a parameter, and
allows the search to find all modes up to a given order. The inner boundary of Ry is also given as
a parameter. The appropriate shifts can be chosen using an understanding of these regions.
There are two important considerations in the choice of o. First, we want to ensure that we find
all dominant modes. Second, we want to avoid the accumulation point(s). One way to accomplish
these objectives is to use two shifts, o1 and o2, and execute two searches. The first search will
begin in R; and will include a portion of Rs. The second will begin in R3 and will also include
a portion of Ry. The search is complete when the union of the searches covers all three regions.
To choose 01, use that fact that guided modes satisfy kng < 8 < knmax. We have found a good
choice of o1 to be the value of ¢ that corresponds with 5 = knpax. By (8) and (9), this gives

o1 = \/—B +4/B? — %4 where B = w — anfnaX. Then, let 09 = —ioq. See Figure 1.

We conclude with two comments. Generally speaking, the eigenvalues of interest in Ry are found
near the outer radius. The inner radius can then be enlarged, if needed. If there is a question as to
whether some propagation constants were missed in the search, the inner radius can be adjusted
accordingly and the search run again. Finally, for the quadratic eigenvalue problem, since § = 0,
the outer radius of Ry shrinks to zero, there are no accumulation points, and therefore, the search
is simplified.

4. NUMERICAL RESULTS

We demonstrate our method on the waveguide structure with the following parameters (w; denotes
the width of the jth layer):

ng = 1.5, ny = 1.66, ng = 1.6, n3 =1.53, ng = 1.6, n5 =1.0
wp = wy = w3z =wy4 =.5, k=29.92918

This structure has been studied in the literature [7]. In this case, since the characteristic function
is stable, the propagation constants can be found using Newton’s method. These values will be
used for testing the method.

We have implemented our method using polynomial bases of degrees 1, 2 and 4. For the
interpolation nodes on each element, the Lobatto nodes are chosen. The computed eigenvalues are
then compared with the known values.

-2
10 —TE,
——TE1
104 [ ——TE2| ]
——TE3
-
10-6 N ——TE4| |
s
I~

SO
1010} O
N

~

—%— First Order
—+— Second Order
—+— Fourth Order

-14 10°
10 1

2 3 4 5 1 2 3 4 5
Refinement Refinement
(a) (b)

Figure 2: Convergence results. The FE computed eigenvalues are compared with known, exact values. (a)
Convergence results using piecewise polynomial basis functions of degrees one, two and four. (b) Convergence
results for the first six modes. In this experiment, piecewise-quadratic polynomials were used for the basis
functions.

In the first experiment, we compare the convergence for different values of p. Figure 2(a) shows
the convergence of TE4 and TE5 for p = 1,2,4. The experiment is designed so that at each step
the matrices are of the same size for each order. For example, to begin, we have p = 1, n, = 40,
p=2, ne =20, and p =4, n. = 10. The number of elements is doubled at each refinement.

Figure 2(b) shows results from he second experiment. Here we demonstrate the convergence of
the first six eigenvalues of the same structure for p = 2.
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5. CONCLUSION

We have derived a method which is numerically stable and is able to compute all modes up to
a given order. Since the discretized version is a polynomial eigenvalue problem, there is no need
for a priori knowledge of the location of the modes in the complex plane. However, the physical
properties of the modes can be used, in conjunction with an iterative method, to find the eigenvalues
quickly and accurately.
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A Closed Form Solution for Longitudinally Inhomogeneous
Waveguides

Mohammad Khalaj-Amirhosseini
College of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract— A closed form analytic solution is introduced for arbitrary Longitudinally Inhomo-
geneous Waveguides (LIWs). First, the differential equations of LIWs are written as a suitable
matrix differential equation. Then, the matrix differential equation is solved to obtain the chain
parameter matrix of LIWs. Afterward, the electric and magnetic fields at any point and also
the scattering parameters are obtained using the chain parameter matrix. The validation of the
introduced solution is studied, finally.

1. INTRODUCTION

Longitudinally Inhomogeneous Waveguides (LIWs) can be used in microwaves as phase changers,
matching transformers and filters [1-3], especially for high power applications. The differential
equations describing LIWs have non-constant coeflicients and so except for a few special cases no
analytical solution exists for them. There are some methods to analyze the LIWs such as cascading
many thin layers [4], finite difference [5], Taylor’s series expansion [6], Fourier series expansion [7],
the method of Moments [8], the equivalent sources [9] and equivalent circuit method [10]. All of these
methods are numerical and do not yield a closed form analytic solutions. However, in this paper, a
closed-form analytic solution is introduced for arbitrary LIWs. First, the differential equations of
LIWSs are written as a suitable matrix differential equation. Then, the matrix differential equation
is solved to obtain the chain parameter matrix of LIWs. The obtained solution is applicable to
arbitrary lossy and lossless LIWs. The validation of the introduced solution is studied using two
comprehensive examples.

2. THE EQUATIONS OF LIWS

Figure 1 shows a typical LIW with dimensions a and b, filled by an inhomogeneous lossy dielectric
with complex electric permittivity distribution e,(z) and length d. It is assumed that a TE;g
mode with electric filed strength E* propagates towards the positive z direction. The differential
equations describing LIWs are given by

dEy(2)

PP JwpoH(2) (1)
dH,(2)

22— oo (er(2) = (Fel 1)) By(2) e)

where f. is the cutoff frequency of the hollow waveguide. Furthermore, the terminal conditions for
LIWSs are as follows

E,(0) — ZsH,(0) = 2E" (3)
Ey(d)+ ZrH,(d) =0 (4)
where ,
= >l
Zs=ZL=2rg = { (fc/f) f (5)
(fc/f)Q 1 ¢

is the waveguide impedance, in which ny = \/po/eo is the wave impedance of the free space. It is
known that the electric and magnetic fields of any arbitrary point z can be related to those of the
point z = 0 by a chain parameter matrix as follows

[ 7 } = () [ 2% } (6)
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Figure 1: A typical LIW.

The chain parameter matrix of the point z = d can be used to find the S parameters using (3)—
(6), as follows

—®(1,1)Zrp — ®(1,2) + ®(2,1) 22, + ®(2,2) Z7p

®(1,1)Zrp — ®(1,2) — ®(2,1) 2%, + ®(2,2) Z1p
27

®(1,1)Zr5 — ®(1,2) — ®(2,1) 22, + ®(2,2) Z 18

®(1,1)Zrg — ®(1,2) + ®(2,1) 22, — ®(2,2)Z 75

52 = S 1) Zrp —®(1,2) — B2, 122, + ®(2,2)Z 1z )

S =

So1 = Si2 =

3. ANALYTIC SOLUTION OF LIWS

In this section, an approach is proposed to solve the differential equations of LIWs, analytically.
First, we define the distributed secondary parameters of LIWs (the waveguide impedance and the
propagation coefficient) as follows

1o

Zg(z) = 10
RN E T o
W=) = 5/ (@) = (fel ) (11)
Then, we transform the set of differential Equations (1), (2) to the following ones

N Th - CRRCLES (12)
a2 _ o2)B,() (13)

where )
Ey(z) = mEy(z) (14)

is defined as the normalized electric field. Now, the set of differential Equations (12), (13), can be
written as the following matrix differential equation

TX(2) = ~A()X(2) (15)
where _ _
xe=| 5 ] (16
and o
_ | A5 ()
A(z) [ Zg(w)(z)d 0 (17)

From the matrix algebra and using (15), we can write the following

dX(2)X1(2) 2 d(In(X(2)) = —A(z)dz (18)
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Integrating (18) gives us the following
In(X(z)) — In(X(0)) = In (X(2)X1(0)) = —/A(z’)dz’ (19)
0
Therefore, one can determine the following solution for the unknown matrix in (15).
X(2) = exp | — / A()d2 | X(0) = B(2)X(0) (20)
0

The approximations used in (18) and (19) are dependent to the matrix A(z) and its integral.
From (14), (16) and (20), the following closed form analytic solution is obtained as the chain pa-
rameter matrix of LIWs.

o) = | 7 | e |- / A | [ V400
0

In (2,(2)/2,(0) 2 1/Z,(0) 0
1

- o |- | . <|
[ 0 1] JA(Z)d 0 ’
0

| e

The electric and magnetic fields at any point z can be obtained after finding those at the surfaces
using the chain parameter matrix of the point z = d and the boundary conditions. The proposed
approach to solve the matrix differential Equation (15) is inspired of the approach that is usually
used to solve ordinary scalar differential equations, indeed.

4. EXAMPLE AND RESULTS

In this section, the introduced explicit analytic solution is validated using two comprehensive ex-
amples. Consider a WRG-90 waveguide (a = 0.9 inch and b = 0.4 inch) filled by an exponential
dielectric with the following electric permittivity function

£1(2) = ey exp(kz/d) (22)

This exponential LIW has the following distributed secondary parameters.

7 (2) = o
U AT T A -
1(z) = §B(2) = i=/eoexp(kz/d) — (o] )2 (24)

Also, the matrix A(z) of this LIW will be as follows

k ro exp(kz/d) cw
A(Z) = [ _ﬁa,,o e)gcp(kzl;d)—(fc/f)g jE\/ErO eXp(k:Z/d) - (fc/f)2 ] (25)

je/eroexp(kz/d) — (fe/f)? 0
Therefore, the chain parameter matrix of this LIW will be given by

o 0
i’(z) = [ \/57‘09Xp(k'6/d)_(fc/f)2 1 ]

Ver—(fe/)? ero—(f/F)?
e | - ln( Gz -GO) |, [ Vero=Ue/D? 0](26)

Ve exp(kz/d)—(f./1)? 70
G(z) — G(0) 0 0 1

where

6() = 3225, (Vamowha/d) — /7~ tan! (4 Vet~ /77 ) ) (@1
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“Now, assume that €, = 1 —j0 and d = 2cm. A TE;¢ mode wave with the electric field strength
E' = 1.0V /m propagates in the considered lossless LIW. Figures 2,3, compare the amplitude and
phase of the electric field distribution at frequency 10 GHz, obtained from the introduced solution
with the exact ones [8-Appendix], considering k = 1 and 2. Also, Figures 4,5, compare the ampli-
tude of the scattering parameters S11 and S21, obtained from the introduced solution with the exact
ones against to the frequency. One sees that the introduced solution has a good agreement with the
exact ones. It is seen that as k decreases, the accuracy of the solution is increased. Also, the error
decreases and increases alternately with respect to frequency. According to the above examples,
one may be conclude that the accuracy of the introduced solution is increased as the variation of
the electric permittivity distribution (k/d in the examples) is decreased. Mathematically, as the
diagonal elements of the integral of the matrix A(z) tend to zero with respect to its anti-diagonal
elements, the error is decreased. It is worth to mention that the determinant of the chain parameter
matrices obtained in the above examples were exactly equal to one at all frequencies.
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Figure 2: The amplitude of the electric field for ex-  Figure 3: The phase of the electric field for expo-
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Figure 4: The amplitude of the scattering parameter ~ Figure 5: The amplitude of the scattering parameter
S11 for exponential LIW. Ss1 for exponential LIW.

5. CONCLUSIONS

A closed form analytic solution was introduced for arbitrary Longitudinally Inhomogeneous Waveg-
uides (LIWSs). First, the differential equations of LIWs are written as a suitable matrix differential
equation. Then the matrix differential equation is solved to obtain the chain parameter matrix
of LIWs. The validation of the introduced solution was studied using a comprehensive example.
It was seen that the accuracy of the introduced solution is acceptable for arbitrary LIWs at all
frequencies. Moreover, the accuracy of the introduced solution is increased as the variation of the
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electric permittivity distribution is decreased. The introduced method can be extended for LIWSs,

whose magnetic permeability is inhomogeneous solely or along with their electric permittivity.
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Abstract— In its conventional form, the Transmission Line Modeling method is not capable
of accounting for media whose constitutive parameters are exotic. Permittivity and permeability
less than unity can be reached by using a mesh that is the numerical counterpart of a dispersive
left-handed transmission line network. In this communication, the dispersion thus introduced
in a two-dimensional node is shown to follow a Drude profile. This property is verified on an
example involving an infinite cylinder made up of metamaterial.

1. INTRODUCTION

The Transmission Line Modeling (TLM) method is a numerical time domain technique that was
introduced by Johns in 1971 [1]. Since then, it has been successfully employed to solve many
problems involving the propagation of waves for acoustic, diffusion and, especially, electromagnetic
problems.

TLM exploits the analogy between Maxwell’s equations and the equations of the transmission
line theory. The electromagnetic medium to be simulated is discretized by an analogous mesh of
interconnected transmission lines, while the electromagnetic wave is modeled by voltage and current
pulses that propagate into such a network. A unitary cell of the mesh, called node, is defined as
the intersection of constitutive transmission lines. At low frequency, a node can be understood in
terms of lumped capacitors and inductors, i.e., a usual distributed L-C' circuit.

Traditionally, in the TLM modeling of conventional materials, the optic constants are supposed
to be non-dispersive as long as the wavelength A is large enough compared to the size of the nodes.
On the other hand, considering metamaterials, with exotic parameters, modifies this statement
given that the nodes become dispersive in that case as shown by So and his colleagues in [2].
These authors adapted the fact that networks of left-handed transmission lines (with the position
of L and C interchanged, i.e., series capacitances and shunt inductances) can support backward
electromagnetic waves [3] to construct a TLM node capable of modeling metamaterials. Because
of the special characteristics of TLM, it should be noted that modeling such metamaterials with
this method is more than a simple extension to account for the negative values of the permittivity,
€, and permeability, u, it is also a conceptual procedure that can be viewed as the numerical
counterpart of what happens in a real left-handed transmission line network. This makes TLM
an elegant approach to model metamaterials. This approach includes the assumption of a working
frequency at which the required permittivity and permeability are adjusted; both are altered at any
other value. As a result, the TLM node for metamaterials is a dispersive system, which means that
there is no need to add artificial dispersion, as it is the case for other comparable methods (FDTD
for instance). Controling the behavior of the simulated metamaterial in a given frequency range
is fundamental; in this sense, it has been recently shown that the inherent dispersion is of Drude
type [4] for the Symmetrical Condensed Node (SCN) [5] which is, hitherto, the most accurate and
versatile node to study three-dimensional (3D) problems.

However, there is no need to use SCN for the study of two-dimensional (2D) problems as it
increases the computational requirements. The less demanding 2D nodes should be preferred. The
principal aim of this communication is to derive the dispersion associated with 2D nodes to show
that it is also of Drude type. This result will be verified on an example involving the scattering of
a dispersive left-handed cylinder that is illuminated by a plane wave.

Furthermore, in the usual TLM procedure, there is a certain degree of freedom in the election of
the TLM numerical parameters, such as the impedance of the constitutive transmission lines of the
nodes or the time-step. However, causality conditions may alter this statement if metamaterials are
involved. In this communication, a particular emphasis will be placed on the restrictions imposed
by these conditions.
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2. TLM SIMULATION OF METAMATERIALS

Let us consider the 2D node for Transverse Electric (TE) mode [6]. If losses are disregarded, it is
made up of 7 lines: 4 principal lines allow the propagation of the pulses into the mesh, 1 capacitive
stub line accounts for €, while 2 inductive stub lines account for p, and p,. The admittance of
the capacitive stubs and the impedance of the inductive stubs take the form:

_ 2e,60 AxAy _ ~ 2ugpo AyAz _ 7 _ 2pypro AxAz _ (1)
YAt Az ’ T ZoAt Az Y oAt Ay '

In these expressions, At is the time-step; Yy and Zj are the characteristic admittance and impedance,
respectively, of the principal lines; while Az, Ay, and Az are the dimensions of the node along the
three Cartesian directions. An important condition to ensure stability is that the parameters of
Eq. (1) must be positive.

Obviously, negative values for € and p render Y and Z negative, which means that the TE-node
is unable to model left-handed media in its original form. However, by taking into account that
a positive inductance L is equivalent to a negative capacitance C = —1/w?L, where w = 27 f is
a temporal frequency, it can be understood that these negative parameters can be easily modeled
with TLM by interchanging the position of the inductive and capacitive stubs. As a consequence,
the usual expression of the stubs must be modified. Concretely, the regions of space where £ < 1
and p < 1 must be discretized by using nodes for which Y and Z are given by [7]:

Y=

At?w? [25250 AzAy

al g APw? [0 AyAz
4 oAt Az P

ALPW? [2pypo AxAz B
4 ZgAt Az

2} S ZoAt Ay ] @
The unique difference between Eq. (1) and Eq. (2) is the presence of the negative factor
—At?w? /4. Accordingly, if the parameters in Eq. (1) result to be negative, substituting them
by the parameters of Eq. (2) make them positive, which again ensures stability. Furthermore, the
fact that these values depend on the frequency means that this approach is valid only at one single
frequency. As a result, the simulation of metamaterials with TLM requires the assumption of a
functional frequency wg at which the optic constants take the desired values.

3. SCATTERING BY A LOSSLESS LEFT-HANDED CYLINDER: EXACT SOLUTION

Let us now consider a plane wave incident upon a lossless cylinder — with radius r = a — embedded
into free space. The incoming wave is linearly polarized with the electric field E* parallel to the
axis 2 of the cylinder. The wavevector in free space kg = ko is perpendicular to the axis of the
cylinder. In cylindrical coordinates, {r, ¢, z}, we have E* = 2E exp(—ikox). According to the usual
procedure, the plane wave is transformed into a superposition of cylindrical waves that satisfy the
Helmbholtz wave equation in cylindrical coordinates, which leads to [8,9]:

[ee]

E'=:E, Z i~ "y, (kor) exp(ing), (3)

n=—oo

where J,, represents the Bessel function of the first kind.

In the presence of the lossless cylinder, the total field is the sum of the incident wave, given in
Eq. (3), and the scattered wave. Expecting outward waves, the latter quantity can be written in
terms of Hankel functions of the second kind

E’ = ﬁ’Eo Z GnHr(Lz) (k0T> exp(imp), (4)

n=—oo

where a,, represents the yet unknown amplitude coefficients. Note that the use of Hankel functions
of the second kind means that the choice e*?, as time convention to denote the time-harmonic
dependence, is assumed. The other representation, e, would lead to the use of Hankel functions
of the first kind.

Inside the cylinder, the stationary wave can be written as:

E°=2E) Y [bnJu (kr) + c¥y (kr)] exp(ing), (5)

n=—oo
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Figure 1: (a) Norm of the electric field in terms of the frequency. (b) TLM vs (¢c) COMSOL at f = 2 GHz.

(©

where Y,,, b,, and ¢, are the Bessel function of the second kind and the amplitude coefficients,
respectively. The wave vector is given by k = w./g€oifio-

The magnetic field H is obtained by using the Maxwell-Faraday equation V x E = —%B , where

B = ppuoH is the magnetic flux density, which gives H, = —#l% and H, = - L %.
ppo T O iwppo Or
The unknown amplitude coefficients a,,, by, ¢, can be found by applying the usual boundary
conditions at the interface r = q, i.e., conservation of the (i) tangential component of F, (ii) normal
component of B, and (iii) tangential component of H given that there is no surface current density.
The result is

—n

Jn(ka)J! (koa) — \/%Jn(koa)J;L(ka)
ap =1 ; 9
\/%Hq(f)(koa)%(ka) — HY (koa)Jn (ka)
1 Tulkoa) HY (koa) — HP (koa) " (koa)

by, =1 - , ¢, =0.
H? (koa) T, (ka) — \/%H,(L2)(k0a)J,g(ka)

It is worth noting that the aforementioned series are slowly convergent when A is not large compared
to a.

Let us consider a left-handed cylinder whose constitutive parameters are e = —4 and p = —1;
accordingly, the refractive index is negative and can be expressed as n = —,/q. By using Eq. (4),
E.(f) is calculated at r = 4a and ¢ = 0. The result in the range 1.5-2.5 GHz is depicted in Fig. 1(a)
(blue line). -

The TLM simulation of E in terms of the frequency is plotted in Fig. 1(a) (black symbol). The
functional frequency fo = wg/27 has been choosen to be fy = 2GHz so that (fp) = —4, and
u(fo) = —1. It is plain from Fig. 1(a) that the results match only at f = fy. This was expected
given the presence of the term w in Eq. (2), which deviates € and p from their initial values by
rendering them dispersive. For completion’s sake, Figs. 1(b) and 1(c) offer a comparison between
the F-mapping obtained with TLM and with the software Comsol at f = fy, which clearly evinces
good agreement. The important remaining concern is to determine the kind of dispersion that is
involved in the TE-node when metamaterials are under consideration.

4. DISPERSION OF THE TLM MESH

Let us consider the frequency dependent expressions given in Eq. (2). In practice, and as it has
been pointed out in Section 2, a working frequency that defines e(wp) and p(wp) must be previously
chosen. In the numerical procedure, this definitively fixes the values of Y and Z to be

At2w[2) 2¢e,(wo)eg AzAy Ath(Q) 2pq (wo) o AyAz
Yelwo) === { YoAt Az _4]’ Zelwo) = == ZoAt Az 2 -
7, (wo) = _Atzw% 2py(wo)po AzAz 5
y\o) =Ty ZoAt Ay ‘
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On the other hand, from Eq. (2), we could also obtained the expressions of ¢(w) and p(w) in terms
of Y and Z or, more precisely, in terms of Y (wp) and Z(wp) given that the values of the stubs have
been fixed.

er(w) = Yo [2At2 Z_AQI%;MO)] () = 2o [At2 2_2237((»00)]

gow? At=3-4 uoszt%

Zo[AtPw? =27, (wo)]
u0w2At7Azﬁz

, py(w)= (8)

Therefore, by using Eq. (7), we can get the dispersion relations of the optic constants

w2 w(Q] W

£x(w) :Aaz_;g [Ae—e2(wo)] , pa(w) :Aum_ﬁ [Ap—pz(wo)] s py(w) :Auy_;g [Auy_ﬂy(WO)} , (9)

_ 2AtY Az _ AtZyAx _ AtZyAy
where Aaz T e0AzAy ) TTHa T poAyAz? and Aﬂy T poAzAze

Let x(w) =1— wf) /w? be either a permittivity or a permeability that follows a Drude dispersion.
The quantity wy, is the plasma frequency that can be easily determined if x(w) is known at a certain
frequency wy. Indeed, x(wg) =1 — wg Jw?d, which means that wlz) = w3[l — x(wp)]. Finally,

w2
x(@) = 1= [1— x(wo)]. (10)

which evinces that Eq. (9) are clearly reminiscent of a Drude dispersion model. Actually, the
last statement depends on the value of A. , A, , or A, . Usually, the TLM parameters as At,
Zy = 1/Yy, Az, Ay, or Az constitute degrees of freedom as long as the quantities in Eq. (1) remain
positive. The procedure described in this communication allows to elude this rule given that we can
substitute Eq. (1) by Eq. (2) if the former results to be negative. However, this prescription makes
the optic constants strongly dispersive and is thus of limited interest. Since conventional media
can be approximated as non-dispersive, at least in a certain frequency range, we do not want them
to be described by the strongly dispersive Eq. (1); Eq. (2) are best suited. On the other hand,
metamaterials are inherently dispersive [10] and, as a result, should be associated with Eq. (2)
rather than with Eq. (1). Consequently, we should ensure that the parameters of Eq. (1) are as
follow: e>1=Y >0,e<1=Y <0, pu>1=2>0,and p<1= 27 <0.

These conditions may restrict the election of At and Zy. For the sake of simplicity, let us
consider square nodes, i.e., Ar = Ay = Az = Al. Assuming that € and p can take any values, in
particular 1 £+ 0 with 6 — 0, we reach the conclusion that }%)“:AOtAl —4 =0 and ZQO“AOtAl —-2=0,
which leads to

Al
ZO \/57707 At C\/Q’ (11)
where 79 and ¢ are the impedance of free space and velocity of light in free space, respectively. If
0 - 0, the allowed Zy and At are not single values anymore and there exists a range of permitted
values that becomes larger as ¢ increases.
Furthermore, the choice of Eq. (11) has another virtue: A. = A,, = A,, = 1, which yields
Eq. (9) = Eq. (10), i.e., rigorous Drude’s dispersion.

5. DISCUSSION

Since we have clarified the problem of the dispersion of € and p for the TE-node if metamaterials
are involved, we are now capable of looking into the mismatch that has been observed in Fig. 1(a).
While ¢ = —4 and p = —1, without regard to the frequency, in the analytical calculation, the
cylinder’s constitutive parameters in the TLM modeling are as expected only at wp as it can be
checked in Eq. (9). At other frequencies, the constitutive parameters disperse. In the numerical
calculation that has been performed in Section 3, we chose for Zy and At the values given in
Eq. (11). As a result, the relation of dispersion in the TLM node was described by Eq. (10).
The analytical calculation is performed again, but instead of using constant values for € and p,
Eq. (10) is employed with e(wg) = —4 and p(wp) = —1. The comparison between the analytical and
numerical results are then displayed in the range 0-6 GHz in Fig. 2(a): They show good agreement
between each other. This validates the development that has been provided in Section 4.

Note that the spectral distribution of £(w) and u(w) exhibits either positive or negative values.
Therefore, the sign of n has to be accordingly picked up in the analytical calculation. In Fig. 2(a),
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Figure 2: Analytical and numerical norm of the electric field for a dispersive left-handed cylinder. (a) The
frequency ranges from 0 to 6 GHz. (b) Enlargement of the previous plot from 0 to 2 GHz.

we have plotted both cases, i.e., n = +y/e(w)u(w). As expected, at low frequency, the negative
root matches the computational curve while the positive root matches it at high frequency. The
sign of e(w) and p(w) turns out to switch at f = 4.47 and f = 2.83 GHz, respectively. These two
frequencies have been plotted, with dashed lines, in Fig. 2(a). We have a clear confirmation that
bellow the lower bound we have n < 0 and, beyond the upper bound, we have n > 0. Nonetheless,
the medium is of single-negative (SNG) kind between those bounds, which gives rise to a little
mismatching that seems to be ascribable to the numerical method. It is worth mentioning that
the same mismatching is also observed for the reflection and transmission coefficients for a SNG
infinite slab illuminated by a plane wave. This surprising behavior is currently under study.

In Fig. 2(b), we look more closely at the 0—2 GHz range, it reveals that there is a clear mismatch
at low frequency. This was expected given that € and p are large as f tends to zero, which results
in A to be small inside the cylinder. Therefore, the series in Eq. (4) converge slowly and we cannot
rely on the analytical low frequency values. The problem is similar for the TLM modeling. TLM is
a low frequency technique and it can be considered as reliable as long as A is much larger than Al.
Usually, the lower bound for A is set to be Apin = 10Al, which means that fi.x = m. In our

modeling we have chosen Al = 1 mm, which means that f < finax = f > 0.42 GHz. This bound is
represented in Fig. 2(b), which suggests that we should be more restrictive than A, = 10Al.

6. CONCLUSION

Metamaterials are inherently dispersive and, as a result, numerical modeling of metamaterials must
take this property into account. In this communication, we have proven that the 2D TLM nodes
used to simulate metamaterials, which have been shown to be dispersive, exhibit a Drude type
dispersion. This special behavior has been illustrated on an example that involves the scattering
of a left-handed structure.
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Abstract— Propagation of the Gaussian-shape pulses, which are generated by sources with
Gaussian spectral distribution, is theoretically studied in single mode fibers. Using Fourier trans-
form pair, it is possible to express the pulse transmission behavior considering the effects of the
chirp on the pulse width; a parameter which is depends stochastically on the various factors such
as dispersion, dispersion slope and the source spectrum. These dependencies and sensitivities are
studied and their variational behaviors are derived. It is found that, the pulse width sensitivity
is higher for negative chirp factors and smaller wavelengths sources. This width sensitivity is
increased for longer length fibers whereas it is low for shorter wavelengths. The pulse width sen-
sitivity is an increasing function with respect to the small dispersion slope and has a maximum
at a determined point. This situation for sensitivity is repeated for different wavelengths. If
we use wide spectrum sources, the pulse width sensitivity is generally increased. But, with an
appropriate spectral source width and wavelength, it is possible to decrease the sensitivity even
to zero.

1. INTRODUCTION

Multi-path dispersion in optical fibers is important phenomenon, which can broad a pulse during
the propagation through an optical fiber [1,2]. As a result, the information-carrying capacity of the
fiber related to the bit-rate is decreased [3]. A precise relation between the bit rate and the time
difference of different components of the propagated pulse was done using stochastic procedure [4].
Usually at the operating wavelengths, the amount of the pulse broadening and bit rate limitations
can be expressed by dispersion amount and its slope [5]. Note also that, the width of the input pulse
depends on the spectral width of the source which can be minimized by using a monochromatic
light source. In practice, the spectral width of the sources is much larger than the signal bandwidth
of the pulse and this point must be considered in the applied stochastic theory for pulse propagation
in single mode fibers (SMFs) [5]. Chirping of the laser sources, described by chirp parameters, is
another important factor which we should consider in pulse width calculations. On the other hand,
the propagated pulse width is a sensitive parameter related to some variables such as wavelength,
input pulse width and etc. This sensitivity can be controlled by choosing some appropriate values
of mentioned parameters.

2. THEORY OF PULSE DISTORTION

The general theory of the propagation of chirped pulses in dispersive media is presented by Mar-
cuse, [4,5]. Here, dispersive effects up to the third order are considered too. The used expression
for our discussion is useful for arbitrary shaped pulses. The pulse propagation equation is solved
in spectral (Fourier) domain and if we introduce the slowly varying amplitude of the pulse envelop
as A(z,t), and considering the quasi-monochromatic approximation, after expanding the Taylor
expansion of the propagation constant up to third order, the solution is in the form of [1]:

+0c0 ) . )
A(z,1) = % / SA(0, 1)] elsmetriman=iut] g, (1)

— 00

where the symbol & denotes the Fourier transform, 85 and (3 are the group velocity dispersion
(GVD), related to the dispersion parameter, and the factor of the dispersion slope respectively.
The above relation for A(z,t) can be extended for any higher order dispersion. In general, the
propagated pulse does not remain Gaussian during the propagation and would be broaden. This
broadening is not uniform and there is a tail with an oscillatory structure in the pulse shape. Hence,
a describing factor such as full widths at half maximum (FWHM) is no longer useful. In this case
an appropriate estimation for the pulse width is its RMS value, defined as the root of:

o® = (%) — (1) (2)
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where () denotes the different moments as follows:

[ | Az, 1)) dt

") = [T Az, 1) dt

3)

Now assume the nonlinear effects are negligible, so the different components are propagated by a
simple relation in the form of:

S[AG )] = {SAQ. D]} U7 = | P(w) M| 07 )
where the spectrum of the input pulse is shown by P(w) and n(w) describes the input chirp effects.
Note that the field propagation constant depends on the frequency (and may be the fiber length).

The broadening factor can be normalized to oy, the RMS width of the input Gaussian pulse, and
it is shown that after some manipulations we can rewrite (3) in the form of [1]:

o\> (. CBLY’ o (Bl o o BL\
<ao> _<1+ 20%) +(1+Vw)<208> + (1+C*+ V) 74\/503 (5)

where we assumed that the initial field of the input pulse is chirped Gaussian and it is represented

by:
1+5C [ t)?
(%) 0

In (6), C is the chirp factor, Ay is the peak amplitude and T depends to FWHM of the pulse.
Other parameters are L, the fiber length and V,, = 20,00, where o, is RMS spectral width of the
input source spectrum.

A(z,t) =0 = A(0,t) = Agexp

3. SENSITIVITY OF THE PULSE WIDTH

Consider a function from n variables z1,z2,...,zy,; for example y = f(z1,22,...,2,). Every
(relative) change in each of the variables can causes a change in the function y. If the variable
variations are stochastic then the function variations will be the random processes too. We can
define the function changes due to the x; variations in the form of:

9y
Ay =~ Ax; 7
To have a dimensionless interpretation of the function changes we can define its sensitivity in the
form of:

0
x =2 (8)
Quiescent Point 81’1

Now, we can study the sensitivity of the pulse width, with the aforementioned conditions, with
respect to some variables which are random processes such as chirp, dispersion and input spectral
behavior.

Zi
Y

Sensitivity of y respect tox; = SY. = <

4. NUMERICAL RESULTS

Using (8), we can derive the normalized pulse width sensitivity with respect to the chirp factor,
C. The results are shown in Fig. 1 for different fiber lengths and different exciting wavelengths.
Consider the effects of the fiber lengths at first [Fig. 1(a)]. As seen, the sensitivity goes to zero for
some non-zero values of chirp factor and this is occurred for positive and negative chirp factors but
in a non-symmetric manner. For example at fiber length of about 6 km, there is zero sensitivity
for C'~ —2.2 and C =~ 2.0. In other words, we can use a source with nonzero chirp factor whereas
there is no any sensitivity like the chirp-less case. The selected values for chirp factor are decreased
with increasing the fiber lengths. Higher sensitivity is seen for short fibers and it means for shorter
fibers we should choose the chirp factor precisely.

Zero sensitivity can be achieved by different source wavelengths too. This is shown in Fig. 1(b).
Again it is possible to have zero sensitivity for pulse widths with non-zero chirp factors. Short-
wavelengths sources should not be used because of higher sensitivity. Hence long-wavelength sources



694 PIERS Proceedings, Cambridge, USA, July 5-8, 2010

04
02
= =
= =
o0 z
= ! =
@ @
w H w
02
04 1 0 1 2
Chirp
(2)

Figure 1: (a) Pulse width sensitivity respect to the chirp factor for different fiber lengths. (b) Sensitivity for
different wavelengths.
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Figure 2: (a) Pulse width sensitivity respect to the dispersion factor for different fiber lengths. (b) Sensitivity
for different wavelengths.

are preferred. But, in the case of shorter wavelengths we can have chirp factors in the range of +4
or more.

If we use the wavelengths far from the zero-dispersion wavelength for the fiber, the dispersion
factor of the medium is dominated and we can ignore the dispersion slope effects.

In this case, (3 is negligible and the sensitivity calculations are based on the dispersion (or
equivalently (2) factor only. The results are reported in Fig. 2. Generally, the sensitivity is
increased for nonzero dispersion factors. But, for the fibers with higher effects of dispersion this
increment tends to be saturated. This is independent from positive (negative) or negative (positive)
values of By (D, dispersion factor) but in a non-symmetric variations.

The longer fibers are more sensitive respect to the shorter fibers. For a defined dispersion
amount, the shorter wavelengths generate less sensitivity and as shown this factor increased for
higher dispersions.

Consider the case of excitation with wavelengths near to the zero-dispersion wavelengths. In
this case, the effects of B2 (dispersion) is negligible and we should study the appearance of 33 which
is related to the dispersion slope. The results are plotted in Fig. 3.

Pulse width sensitivity is increased for higher slopes but it has a maximum for determined
values of fiber lengths [Fig. 3(a)]. For very large dispersion slopes, the sensitivity is independent
from the fiber lengths but for intermediate slopes the fiber length is very important and short
fibers are better. Behaviors of the input wavelengths are unexpected. As shown in Fig. 3(b), the
sensitivity is increased with increasing the wavelength. But there is an especial wavelength so that
the sensitivity has the maximum and after that it will be decreased.

Finally, we can study the source effects. There are two types of the sources; LDs and LEDs
which are the optical sources with small and large spectral width, respectively. For LDs we have
small FWHM [mathematically we can define V,, < 1 in (5)]. But, for LEDs there is large value of
Vo, (V, > 1). To survey these effects, the pulse width sensitivity is calculated for different values of
V. The results are drawn in Fig. 4. For LDs the sensitivity is very small and it will be increased
for LED sources. For shorter fibers [Fig. 4(a)] there is a value for V,, where the sensitivity is very
small again, like the LD sources. The sources with very wide spectrum have a constant sensitivity
independent of the LED types.

By using short-wavelength sources, it is possible to have LD behaviors for LED sources, where
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Figure 4: (a) Pulse width sensitivity respect to the normalized source spectral width, for different fiber
lengths. (b) Sensitivity for different wavelengths.

sensitivity is zero. For long fibers and long wavelength sources, the sensitivity does not have a
sharp decrement and it may has a maximum.

5. CONCLUSION

In conclusion, the sensitivity of the Gaussian pulse with respect to some parameters is studied
based on the stochastic formulation for pulse broadening in an optical fiber. It is found that, this
sensitivity can be reduced to zero using a proper value of the chirp factor for different fiber lengths
and source wavelengths. In the case of dispersive fibers, short fibers excited with the sources of
short wavelengths are preferred. When we utilize the dispersion-shifted fibers, short length and
wavelength should be used. If LEDs are the exciting sources, it is possible to minimize the sensitivity
by the proper selection of fiber length or wavelength.
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Abstract— A longitudinal stress and strain sensor based on the multimode POF Bragg grat-
ings was analyzed. Several fiber modes were propagating in this multimode fiber, but two fiber
modes were chosen for the stress and strain sensing. Variations of the peak wavelengths for both
modes were approximately linear, but eventual discrepancies may be attributed to a certain vis-
coelasticity of the fiber and measurement errors. The stress and strain coefficient was estimated
to be about 5.3nm/N and 11.8 nm/%, respectively. Furthermore, the effective strain-optic con-
stant and the Young’s modulus of POF were calculated to be about 0.248 and 3.367 GPa. All the
results based on such multimode POF gratings sensor for the measurement of refractive index,
strain, temperature, etc.

1. INTRODUCTION

Fiber gratings written in POF have attracted much attentions since 1999, for their high sensitivity
to strain and temperature, wide tuning wavelength range, good biocompatibility, etc. [1-7]. And
different kinds of POF gratings have been fabricated in POF including both single mode fiber Bragg
gratings (SM FBGs) and multimode fiber Bragg gratings [1-3, 7-15].

SM FBG in POF has been used in strain and temperature sensing, fiber laser with wide tuning
wavelength range, humidity detection, etc. [2-7, 16, 17]. However, for some applications SM-FBGs is
not appropriate due to not easy coupling with optical devices except SMF’s or laser diodes resulted
from a small core diameter [18,19]. On the other hand, MM FBGs have several merits compared
with SM FBGs [20-22]. And they have been used in multiwavelength fiber laser [23, 24] strain and
temperature sensors [18, 20, 25-27], refractive index sensor [28], chemical sensor [29] etc. Therefore,
the fabrication of fiber sensor gratings in multimode fibers and applications of MM FBGs would
be of great interest [26], especially MM FBGs in POF. MM FBGs in POF would have the merits
both of easy coupling with low cost light source belong to MM FBGs and high sensitivity to strain
and temperature, wide tuning wavelength range, good biocompatibility, etc. However, the studies
of MM FBGs in POF are rare. So in this work, stress and strain sensing of MM FBGs in POF was
investigated systematically.

2. STRESS SENSING

Using the FBGs made in MM POF [30], the stress sensing using multimode polymer FBGs was
performed using the setup shown in Figure 1(a). The change in the Bragg grating spectra is
recorded as the stress is applied. The spectrum has more than 10 peaks, with one maximum peak
and second maximum peak at 1571.383 and 1572.373 nm, and their spectral widths of 0.2 nm and
0.15 nm, respectively. As the stress increases, the spectrum moves to the right linearly (Figure 1(b))
without change of shape.

When the stress reduced the spectrum returns. However, it could not return to its original
position as the stress is released to 0.089 N, in which there is a difference of 0.1 nm. This difference
is attributed to the viscoelastic properties of POF [17]. Seen from Figure 1(b), although the
intercepts of linear fit for the maximum peak and second maximum peak are different, the stress
coefficient is almost the same. The stress coefficient was estimated to be about 5.3nm/N. The
error is very small showing good linear relationship. But the loading and unloading process has
some differences which should be resulted from the viscoelastic properties of the materials [17] and
measurement error.

3. STRAIN SENSING

The strain tuning of POF Bragg gratings was investigated by the mechanical stretching as shown
in Figure 2(a). Figure 2(b) shows the resonant shift of the grating corresponding to the variation
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in axial strain. The strain coefficient was estimated to be about 11.8 nm/%, which is comparable
with that for conventional silica fiber gratings [31]. But a little lower than the previous result [5],
attributed to the different materials. Similarly, the strain response for the loading and unloading
also has some difference but the difference is much smaller than that seen from the stress sensing,
which may be attributed to the Young’s modulus changes with strain rate for the viscoelastic
material [32].
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Figure 1: (a) Experiment setup for the stress sensing using multimode polymer FBGs. (b) The maximum
Bragg resonant wavelength and their corresponding linear fit with the axial loading (O, —) and unloading
(O, ——), stress process for FBGs in the MM POF, and the second maximum Bragg resonant wavelength

and their corresponding linear fit with the axial loading (A,

process for FBGs in the MM POF.
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Figure 2: (a) Experiment setup for the strain sensing using multi mode polymer FBGs. (b) The maximum
Bragg resonant wavelength and their corresponding linear fit with the axial unloading (0, ——) and loading
[VAVERREREREE ) strain process for FBGs in the MM POF, and the second maximum Bragg resonant wavelength
and their corresponding linear fit with the axial unloading (O, ——), and loading (v, —-—-— ) strain process

for FBGs in the MM POF.

4. YOUNG MODULUS OF POF

When an axial strain is applied to the Bragg grating in a multimode fiber, the wavelength peak of
the ith reflection mode (\p;) will be shifted by an amount A)y,; due to strain induced changes of
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the periodicity and the effective index given by [26, 27|

Onef oA
ANy =2 (A 5L + neﬁ%) AL, (1)

The strain effect may be expressed further as [26, 27]
Adpi = Api(1 = peglez, (2)

where ¢, is the longitudinal strain suffered by the grating when subjected to a stress. The effective
strain-optic constant (p.g) is given by [27]

—2

i

Peff = 7, P12 — v(p11 + p12)] (3)

where 5, = (B;A\/2m) = nj, (1 is the propagation constant of the ith mode, p1; and pia are
components of the strain optic tensor, and v is the Poisson ratio. The value of p.g could be about
0.248 obtained from Figure 2(b) by linear fitting. This value is a little larger than the silica fiber
(0.22), meaning a little smaller strain sensitivity than the silica fiber [33], which may be attributed
to the smaller Poisson ratio of the materials.

For elastomers, the stress (o) and strain (e,) satisfy the following relationship:

c=F- ¢, (4)

where F is the Young modulus. If we just consider the elasticity of POF while neglecting the
viscoelasticity of POF, the relationship between stress (¢) and axial strain (¢,) of POF can also
be described using the above equation. But in fact, polymer is a viscoelastic material so that the
measured Young’s modulus changes a little when the stress is applied [32]. That’s why the loading
and unloading process has some difference as shown in Figure 1(b) and Figure 2(b).

The relationship between the stress (o) and the force (F') applied upon the fiber is as follow:

F 4F
= AT aD? (5)

where A is the area of the cross section of the fiber and D is the diameter of the fiber.
Combining Equations (2), (4) and (5), there would be:

4(1 = pep)
AXpi = Api 77rD2l; F (6)
where )\pi4(ﬂl§f Lff) could be obtained by linear fitting in Figure 1(b). Based on this, the value of F
could be estimated to be about 3.367 GPa, close to the value of PMMA [32].

5. CONCLUSION

Two fiber modes in this multimode fiber were chosen for the longitudinal stress and strain sensing.
Variations of the peak wavelengths for both modes were approximately linear, but eventual discrep-
ancies may be attributed to a certain viscoelasticity of the fiber and measurement errors. The stress
and strain coefficient was estimated to be about 5.3nm/N and 11.8 nm/%, respectively. Through
the longitudinal stress and strain measurement, the effective strain-optic constant and the Young’s
modulus of POF were calculated to be about 0.248 and 3.367 GPa. The result demonstrated that
this multimode sensor could be employed for the measurement of stress and strain.
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Novel Composite Non Reciprocal Right /Left-handed Line Made
from Ferrite Material

F. Boukchiche!, T. Zhou?, M. L. Berre?, D. Vincent!, B. Payet-Gervy!, and F. Calmon?

Laboratoire DIOM, Saint-Etienne University, France
2INL-UMRS5270, CNRS, INSA de Lyon, France

Abstract— Non reciprocal segments of line are using to connect series capacitors and shunt
inductors in order to perform a right/left-handed planar medium. The artificial medium behavior
is fixed by the value of L-C' components and the transmission line characteristics. The effect of
non reciprocal segments of line are studied. From the derivation of the dispersion relation, new
behaviors may be expected and are observed for several applied magnetic D.C. values. The
concept can be extended to active non reciprocal network.

1. INTRODUCTION

Veselago [1] has given the concept of negative refractive index material (NRI) in 1968. Many bulk
3-D NRI materials including metallic particles in host matrices were studied [2-4]. However, the
losses remain too high for microwave applications. On the other hand, devices and circuits on
planar structures are suitable for electronic integration. L-C loaded transmission lines are easily
used to make planar negative index media [5,6]. Lumped elements (L, C) are connected through
a transmission line network. The effective properties of the left handed media can be changed
by varying the effective permittivity or/and effective permeability. For active solutions, varactors
could be used in place of capacitors.

When magnetic substrate or magnetic thin-films deposited on a dielectric substrate are used to
fabricate a transmission line network, non reciprocal effect can exist and the media properties are
different for the two propagation directions. We propose tunable structures using non reciprocal
transmission lines made from YIG magnetic materials or magnetic thin-films. Results obtained
from simulations and experiments are presented.

2. STRUCTURE UNDER TEST

The composite right /left handed transmission line unit cell is made up of periodic series interdigital
capacitors and shunt inductors embedded in the coplanar waveguide. The unit cell is shown on
Figure 1. The relevant dimensions of the interdigital capacitor are a finger length of 75 um and width
of 72 um for a finger spacing of 10 pm. The shunt inductance length is 575 um. The length of non
reciprocal transmission line between the interdigital capacitor and the shunt inductor is 1.05 mm,
whereas the length of non reciprocal transmission line connecting the probes is 2.1 mm. The shunt
inductance extracted by 3D simulation is around 105 pH and the series capacitance is about 0.25 pf.
The magnetic properties of the YIG thin film are: magnetization My = 140 kA /m, damping factor
from Polder model [7] around 0.05. The non-reciprocal effect is due to the gyromagnetic resonance
phenomenon occurring when a D.C. magnetic field is applied to the ferrite substrate (or film) along
the transverse in-plane direction.

Lo
Cp Co
5 i
a dr2 di2 a

Figure 1: Unit cell of structure network.
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3. RESULTS

The properties of such a coplanar waveguide are evaluated experimentally from 1 to 20 GHz. On
the other hand, simulations have been made to evaluate the transmission coefficients (Figure 2).
These simulation results are in good agreement with experimental results given on Figure 3.

The value of the applied magnetic field being not exactly the same, the gyromagnetic resonance
frequency is slightly shifted and the simulated transmission coefficient values are lower than the
experimental ones. The experimental and simulated results show that the gyromagnetic resonance
frequency of this CPW is centered at 8.2 GHz, and a band gap is obtained for frequencies starting
at 11.2 GHz. As expected, we obtain a gyromagnetic resonance from about 7-11 GHz, and a non
reciprocal phenomenon is present.

From experimental data the dispersion diagram can be plotted for several D.C. applied fields.
Results for zero applied field (small remanent field) are given on Figure 4. The left-handed and
band gap regions are clearly observed.
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Figure 2: 3D simulated S-parameters in dB when the D.C. applied field is close to 140 kA /m.
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When the D.C. field increases the dispersion diagram varies showing unusual behavior in the
gyromagnetic resonance frequency band. On Figure 5 the group velocity could become infinite in
a dispersive and lossy material [8]. In this case, it does not keep the energy propagation velocity
meaning.

4. CONCLUSION

Planar non reciprocal negative refraction index medium could be carried out on magnetic substrate
or thin film. This medium was made from L-C loaded non reciprocal coplanar transmission line.
Inside this strong dispersive region, unusual propagation behavior may occur and could be an
interesting material support to design new components like non reciprocal filters or couplers ... In
addition, variation of the D.C. applied field makes possible tunable devices. However, we have to
use a low loss material for usual applications. A coplanar isolator with low insertion losses ([9]) is
under study. It can work in the LH-passband region and a non reciprocal filter will be performed.
Further works are still under consideration to complete this study and to design new microwave
devices.
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A New Profile for Metal Post Circular Waveguide Polarizer
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Abstract— This paper presents a new profile for depth of metal posts in circular wave guide
polarizer. Simple designs of metal posts depth arrangement are predefined by tangential profile.
Finally, exact depths of metal posts are tuned by HFSS. Measurement and simulation result have
a good agreement in 18% bandwidth.

1. INTRODUCTION

In circularly polarized antenna feed systems, polarizer are used to convert linearly polarized signals
provided at the first interface port (circular waveguide) into circularly polarized signals supplied
to the second interface port (antenna). Typical examples of polarizer are a circular waveguide
polarizer with metallic posts, a corrugated waveguide polarizer and a dielectric slab waveguide
polarizer [1-3].

A circularly polarized wave is represented by the superposition of two orthogonal linearly po-
larized weaves that posses identical magnitude and a phase difference of +7/2. In conventional
polarizer such as metal post (pin) polarizes apart from good matching properties at each port,
there are two basic demands on the design of these polarizer type. Firstly, the signals of the
linearly polarized modes must be exactly divided (combined) into orthogonal components with
identical magnitude. Secondly a differential phase shift of +m/2 between these semi signals has to
be accomplished.

Thus, the complete polarizer can be regarded a combination of a power divider and two inde-
pendent phase shifter. Both tasks must be realized simultaneously by differential phase shifting
region that exhibit a physical alignment of 45 deg with regard to the incident linearly polarized
mode supplied to import (TE11).

For designing this type of polarizer, we can use equivalent circuit, and then it is reached to
desired result by empirical tuning depth of posts [4]. The depth of posts gradually increased from
the beginning to the middle of circular waveguide. So far ther