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Image Appraisal of Full Waveform Inverted GPR Data
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Abstract— We have recently developed a novel method for explicitly computing the permit-
tivity ε and conductivity σ sensitivity functions (Jacobian matrix J) of ground penetrating radar
(GPR) data, based on a time domain adjoint approach which uses a finite difference modeling
method. This not only opens up the possibility for performing Gauss-Newton type inversions,
which offer distinct advantages over standard gradient-based approaches, but also permits a
methodology for assessing the reliability of inverted GPR images from full waveform data. Image
appraisal is performed through a joint analysis of the eigenvalue spectrum of the pseudo Hessian
matrix H = JT J and the formal model resolution matrix R = (JT J + λI)−1JT J, where λ is a
damping value to stabilize the matrix inversion. In seismic and geoelectric inversion, the damping
factor is often chosen as the median value of H, but the justification for this is not clear. The
diagonal values of R give the resolution of each cell in the model, with values varying from 0
(unresolved) to 1 (perfectly resolved). The off-diagonal elements convey the trade-offs (cross-
coupling) between the different parameters, and the degree of image blurring. The eigenvalue
distribution of the pseudo-Hessian matrix provides a measure of the information content of an
experiment and shows the unresolved model space. The effect of model perturbation along a
given eigenvector direction on the cost function is established in terms of the size of the corre-
sponding eigenvalue. The relative eigenvalue range (RER), which is the width of the normalized
spectrum (with entries assembled in descending eigenvalue order) at the level of the noise floor,
is a measure of the resolved model space. Four and three-sided radar acquisition geometries
(e.g., combination crosshole and borehole-to-surface) yield higher RER values than a one-sided
(surface reflection) or two-sided (crosshole) experiment, indicating greater information content
and smaller null spaces. Clearly, the better the angular and spatial coverage of the target, the
more reliable the image. Resolution is not just a function of the recording geometry and the
quantity measured but also the underlying model itself.
We show that cumulative sensitivity (i.e., the column sum of absolute values of the Jacobian)
images can be used as a reasonable proxy for formal resolution. Cumulative sensitivity is far
less expensive than obtaining the resolution matrix, which involves large matrix inversion and
multiplication. We also show that only minor differences exist between the resolution images
provided by normalized Jacobians for the full set of ε and σ parameters and the sub-Jacobians
for the individual ε and σ values. Permittivity sensitivity values are typically 109 times larger
than the conductivity values, because they involve a time derivative of the electric field (i2πf
term, where frequency f is ∼ 100 MHz) as opposed the field itself. Without normalization of
sensitivities or using sub-Jacobians, conductivity updating would be impossible.
To provide more insightful meaning to resolution, we have undertaken a singular value decom-
position of the pseudo-Hessian matrix WΩDT = H and then extract the eigenvectors of D
corresponding to the ‘a’ largest singular values (because H is self adjoint, these are identical to
the eigenvalues) of Ω: Aij = Dij , i = (1, 2, . . . , M); j = (1, 2, . . . , a < M). We then form an
alternative expression for the resolution matrix Ra = AAT and take the diagonal elements of
Ra as representative of resolution in each cell. There is a close relationship between resolution
provided by R and Ra. The effect of the damping factor λ in the formal model resolution formula
for R is basically equivalent to the role of a in the truncated SVD resolution Ra. Small values
of λ have a very similar effect as choosing small values of a. (i.e., just the most dominant eigen-
values). Since SVD resolution is clearly connected to the spectrum of the Hessian, and because
the singular values of Ω and the eigenvalues of H are identical, it provides insight and guidance
on the effect of damping in computing R. However, SVD analysis is extremely expensive from a
computational point of view and not intended for routine applications.
In this contribution we illustrate the sensitivity patterns, eigenvalue spectra and resolution plots
for a variety of heterogeneous models and recording setups.

1. INTRODUCTION

Most waveform inversions of ground penetrating radar (GPR) data [1] are based on gradient meth-
ods [5] that are less expensive computationally than Gauss-Newton or full Newton approaches [3, 4],
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because they do not require the inversion of large matrices in the updating process. A critical aspect
of any inversion procedure is the assessment of the reliability of the final image. Most often, mere
convergence in the data space (i.e., the matching of observed and synthetic GPR traces) is the only
criterion used to appraise the goodness of a final result. A better indication of the correctness of an
inverted model could be obtained by means of a formal model resolution analysis [3]. This requires
the computation of the sensitivity or Jacobian matrix. We recently developed an efficientand novel
scheme for computing the permittivity and conductivity sensitivity functions explicitly based on a
time-domain adjointmethod [2]. The Fréchet derivatives, which form elements of the Jacobian ma-
trix, are obtained by cross correlating forward propagated fields and backward propagated Green’s
functions from the receiver positions (adjoint sources). The procedure was implemented usinga
standard finite difference time domain modeling method.

The availability of the Jacobian not only enables formal resolution analysis to be undertaken but
also Gauss-Newton style inversions to be performed, which generally converge faster than gradient
approaches. In addition, it opens up the possibility to carry out an information content analysis of
the radar data by singular value decomposition of the Jacobian (or what is equivalent, an eigenvalue
analysis of the pseudo (approximate) Hessian matrix). The eigenvalue spectrum is a useful tool
in experimental design because it conveys the extent of the resolved model space and permits
comparison of the efficacy of different recording configurations and data sets.

2. EXPLICIT EXPRESSIONS FOR THE SENSITIVITY KERNELS

The GPR sensitivity functions for each model cell or block in the subsurface are a measure of
how a perturbation in the electrical property (permittivity ε or conductivity σ) in that cell causes
a perturbation in the measured electric field for a given radar transmitter-receiver configuration.
The explicit formulae for the columns of the sensitivity functions for any receiver location xr and
observation time tr were derived in [2] and can be stated thus:
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where the bracket symbol 〈〉 indicates inner product. Here the superscript i indicates the individual
vectorial components , the subscripts ε and σ denote either a permittivity or conductivity derivative,
x′ is any domain point, ES is the electric field in the whole space-time domain, G is the Green’s
operator, T indicates transposition, and the superscript ‘s’ on E refers to a particular source. We
now concentrate on the right side term GT δi(x − xr, t − tr) in Eqs. (1)and (2) where the adjoint
source at the receiver has a single component (i.e., electric dipole direction) that corresponds to
the same component of the sensitivity in which we are interested, namely ∂Ei(xr, tr)/∂ε(x′) or
∂Ei(xr, tr)/∂σ(x′). The inner products in (1) and (2) involve an integration over space and time.
In these equations, the argument of the delta function, x− x′, indicates the point at which we are
computing the sensitivities. The dummy variables over which the integration implicit in (1) and
(2) takes place are indicated in the following by x∗ and t∗.

[
GT δ(x− xr, t− tr)i

x∗,t∗
]j

= Gij (x∗, tr, xr, t
∗) (3)

The inner product sums over the j different field components, which are forward and back propa-
gated in (1) and (2). Due to reciprocity (3) can be written as

[
GT δ(x− xr, t− tr)i

x∗,t∗
]j

= Gji(x∗, tr, xr, t
∗) (4)

These are the different components of the wavefield generated by the delta-function source oriented
along a single direction i. From time invariance, we can write (3) as:

Gji(x∗, tr, xr, t
∗) = Gji(x∗, tr − t∗, 0) (5)

The computation of (5) involves the solution of a standard forward problem, with the source placed
at xr and discharged at t = 0. Depending on the value of tr, different wavefields Gji(x∗, tr−t∗, xr, 0)
will be cross correlated with ∂tEs(x∗, t∗) and Es(x∗, t∗). The presence of δ(x − x′) in (1) and (2)
reduces in practice the integration to that over time alone.
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Practical issues of back propagating a Green’s delta function in an FDTD scheme can be circum-
vented due to the orthogonality of the Fourier base (any frequency component not common to both
vectors in an inner product has no effect on the result) so it is only necessary to back propagate a
filtered delta function in accordance with the frequencies contained in the source spectrum [2].

The size of the Jacobian is N × M , where N is the total number of measurements (number
of sources × number of receivers × number of times along each trace) and M is the number
of model parameters (number of cells ×2, if both permittivity and conductivity are considered).
The temporal derivative of the electric field appearing in (1), suggests that the GPR permittivity
sensitivities will be much higher (by 2πf , f ≈ 100MHz) than the corresponding conductivity
sensitivities (which depend on the electric field itself), and so it is necessary to normalize the
Jacobian or work with sub-Jacobians for each class of model parameter.

Figures 1(a), (b) show a heterogeneous model involving two cross-shaped anomalous bodies
embedded in a homogeneous background of relative permittivity εr = 4 and conductivity σ =
3mS/m. Cross 1 is resistive (σ = 0.1mS/m) with low εr = 1, whereas cross 2 is conductive (σ =
10mS/m) with high εr. The waveform in Fig. 1(c) represents the GPR trace for the crossholeco-
polarized recording configuration as shown, with transmitter and receiver both located at a depth
of 5.3m and 10 m apart. Apart from the direct transmitted arrival, there are additional forward
scattered signals present. Point A corresponds to the first arrival, B to an arbitrary relative

(a) (b)

(c)

(d) (e) (f)

(g) (h) (i)

Figure 1: (a) Permittivity ε and (b) conductivity σ distributions for heterogeneous model. (c) Radar trace
for Tx and Rx antennae positions as shown. (d)–(i) show the ε and σ sensitivity patterns for the three
observation times A, B and C indicated in (c). Units of ε permittivity sensitivity are V2/A · s and σ
sensitivity are V2/A.
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amplitude maximum and C to the absolute maximum amplitude of the entire trace. The ε and σ
sensitivities throughout the medium are shown in Figs. 1(d)–(f) and 1(g)–(i) for these three time
samples A, B and C. There are significant amplitude differences between the pairs of corresponding
sensitivity plots. The sensitivity patterns are significantly distorted from the quasi-elliptical shape
expected in a homogenous medium. As time increases, the sensitivity patterns expand to occupy
a larger region of the model.

3. INFORMATION CONTENT ANALYSIS

The availability of the Jacobian values for various receiver locations and observation times (Eqs. (1)
and (2)) also allows the computation of the pseudo-Hessian matrix, given by HA = JTJ. The size
of this matrix is M × M . The inverse of this matrix is used in Gauss-Newton inversion as a
more refined version of a step length operator common in gradient based inversion schemes. It
specifies the extent of model updating in the gradient direction. The eigenvalue spectrum of the
pseudo Hessian also reveals the information content of a data set, and can be used to appraise
the imaging capability of different recording configurations. Fig. 2 shows in semi-log form the
normalized eigenvalues, arranged in descending order, for the model of Fig. 1 but for four different
recording configurations: surface, cross-hole, three-sided and four sided. The surface and crosshole
experiments involve 5 transmitters and 5 receivers placed uniformly along the upper side of the
model (surface case) or in the left and right sides of the model (crosshole), whereas for the 3-sided
experiment 15 transmitters and 15 receivers are placed evenly along the upper and lateral sides of
the model. For the 4-sided experiment, and additional 5 transmitters and 5 receivers are palced
along the bottom side of the model. The three separate plots in Fig. 2 are for the complete model
space (ε and σ together), and the separate model spaces (ε only, and σ only). The intersection
of the eigenvalue spectra with the horizontal threshold line (relative eigenvalue = 10−7) delineate
the resolved model space and the mostly unresolved model space. This threshold corresponds to a
noise floor below which no significance should be attached to the eignevalues. The portion to the
left of the intersection point is referred to as the relative eigenvalue range (RER) and it provides
a simple measure of the goodness of a particular experimental design. The increasing size of the
RER for the four different experiments (with the highest for the 4 sided experiment) and second
highest for the 3-sided experiment give a clear indication of the increasing reliability of the inverted
models for the different configurations. This can be linked to the improved angular and spatial
coverage of the target.

(a) (b)

Figure 2: Formal model resolution for (a) permittivity and (b) conductivity for the four-sided experiment.

4. FORMAL RESOLUTION AND CUMULATIVE SENSITIVITY

The resolution of each cell within an inverted model can be expressed formally by the model
resolution matrix R defined as [3]:

R =
(
JTJ + λI

)−1
JTJ (6)

where λ is a damping factor (to ensure that the matrix can be inverted) and I is the identity matrix.
R relates the estimated model parameters mest with the true model parameters mtrue through the
relationship mest = Rmtrue. Of particular interest are the diagonal elements of R. Values close
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to 0 indicate poorly resolved parameters, whereas values close to 1 indicate well resolved model
parameters. The rows of R indicate the degree of smearing or point spread functions for each cell.

Figure 3 shows the formal model resolution images obtained for the 4-sided experiment on the
double cross model (Fig. 1) and described above. The two plots correspond to the permittivity and
conductivity sub-Jacobians, and illustrate better resolution for the resistive and low permittivity
cross.

A surrogate or proxy for assessing formal resolution is the cumulative sensitivity function, ob-
tained by summing over all transmitters, receivers and observation times the absolute values of the
sensitivities, i.e., a column sum of the Jacobian, given by:

CS(m) =
∑

s

∑
r

∑
τ

|Js(m)|xr,tr
(7)

The quantity CS is rarely used in GPR or seismic waveform inversion but its appeal is that
it does not require any matrix multiplication or inversion, and is therefore relatively inexpensive.
Space limitations preclude showing comparison CS plots to Fig. 3. Although differences exist there
is a strong similarity in shape, and high cumulative sensitivity values are concentrated in the same
regions of the model where formal resolution is high.

(a)

(b)

(c)

Figure 3: Eigenvalue spectra (a) ε and σ together, (b) ε separate, and (c) σ separate for the four different
recording configurations.

5. SVD RESOLUTION

An alternative to the definition of formal resolution can be provided by means of a singular value
decomposition (SVD) of the pseudo-Hessian matrix, given by

WΩDT = HA (8)

and then extract the eigenvectors of D corresponding to the ‘a’ largest singular values (or eigen-
values) of Ω:

Aij = Dij , i = (1, 2, . . . , M), j = (1, 2, . . . , a < M) (9)
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We then form the following alternative expression for the resolution matrix, referred to as SVD
resolution:

Ra = AAT (10)

and take the diagonal elements of Ra as representative of resolution in each cell. Values close to
zero indicate poorly resolved model parameters, whereas values close to one indicate well-resolved
model parameters. Both the natural model space and that expressed by the columns of D are
orthonormal.

Each vector of the natural base, mi, can be expressed as a linear combination of vectors in the
orthonormal base provided by D:

mi =
M∑

k=1

ckvk (11)

where vk are the othonormal columns of D and ck are the numerical coefficients of the i-th column
of D−1. Since D−1 = DT , it is straightforward to see that

Ra
i,i =

a∑

k=1

c2
k =

a∑

k=1

D2
ik (12)

Because D consists of orthonormal columns, Ra
i,i is always smaller than 1.

More specifically, the resolution valued defined in XX is equivalent to the relative amplitude of
the projection of the natural base element mi on the space spanned by the eigenvectors correspond-
ing to the a largest singular values (i.e., the best resolved ones). There is a very close relationship
between the resolution provided by (6) and (10). The effect of the damping factor in (6) is basically
equivalent to the role of a. Small values of λ correspond to large values of a, whereas large values of
λ have a very similar effect as choosing small values of a (i.e., just the most dominant eigenvalues).

Since SVD resolution is clearly connected to the spectrum of the Hessian, and because the
singular values of Ω and the eigenvalues of HA are identical, it provides an insightful meaning to
resolution. However, since SVD is extremely expensive from a computational point of view, and
not intended for routine practical applications, formal resolution analysis is most often presented.

Figure 4 gives a comparison between formal resolution (6) and SVD resolution (10) for the same
heterogeneous model comprising the two anomalous crosses. The upper set of diagrams (a)–(e)
depict formal model resolution images for different choices of the damping factor λ, in the range
0.01 to 100 times the median value of the diagonal value of HA. By comparison, the bottom set of
diagrams (f)–(j) show SVD resolution for different sets of eigenvalues ranging from the 80 largest
ones to the 3000 largest ones (from a total of 7744). The (a)–(e) and (f)–(j) diagrams of Fig. 4
are extremely similar, establishing a tight connection between the two definitions of resolution.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: (a)–(e) Formal model resolution images for the 4-sided experiment and 5 different choices of
the damping parameter λ. λ0 corresponds to the median value of the diagonal elements of the pseudo-
Hessian. (f)–(j) Corresponding SVD resolution for 5 different choices of the number of eigenvalues used for
the definition of matrix A.
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Moreover, the differences arising in these images as a function of the damping factor or the number
of eigenvalues used suggests that particular care must be taken when analyzing resolution plots.

6. CONCLUSIONS

We have developed a new and effective method for calculating GPR sensitivity functions in the
time domain. This allows us to assess the reliability of inverted images from GPR full waveform
data and the adequacy of an experimental setup. The usual criterion of simple convergence in the
data space is insufficient to appreciate the goodness of a model. Through an analysis based on the
eigenvalue distribution of the Hessian, the cumulative sensitivity pattern and the formal or SVD
resolution matrix it is possible to provide a meaningful estimate of the well resolved and poorly
resolved features of an inverted image.
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